Atomic clock performance beyond the geodetic limit

[1]  P. Wolf,et al.  Geodetic methods to determine the relativistic redshift at the level of 10$$^{-18}$$-18 in the context of international timescales: a review and practical results , 2018 .

[2]  A. Ludlow,et al.  Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock. , 2018, Physical review letters.

[3]  M. Zucco,et al.  Geodesy and metrology with a transportable optical clock , 2017, 1705.04089.

[4]  T. Fortier,et al.  Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock. , 2017, Physical review letters.

[5]  G. Blewitt,et al.  Search for domain wall dark matter with atomic clocks on board global positioning system satellites , 2017, Nature Communications.

[6]  N Quintin,et al.  Test of Special Relativity Using a Fiber Network of Optical Clocks. , 2017, Physical review letters.

[7]  L. Sonderhouse,et al.  A Fermi-degenerate three-dimensional optical lattice clock , 2017, Science.

[8]  C. Guerlin,et al.  Determination of a high spatial resolution geopotential model using atomic clock comparisons , 2016, Journal of Geodesy.

[9]  M. Schioppo,et al.  Ultrastable optical clock with two cold-atom ensembles , 2016, Nature Photonics.

[10]  R. Ciuryło,et al.  Experimental constraint on dark matter detection with optical atomic clocks , 2016, Nature Astronomy.

[11]  Y. Kuroishi,et al.  Geopotential measurements with synchronously linked optical lattice clocks , 2016, Nature Photonics.

[12]  M. Lukin,et al.  Gravitational wave detection with optical lattice atomic clocks , 2016, 1606.01859.

[13]  M. Abgrall,et al.  Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons. , 2016, Physical review letters.

[14]  C Sanner,et al.  Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty. , 2016, Physical review letters.

[15]  M. Takamoto,et al.  Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time , 2016, Nature Photonics.

[16]  P. Jetzer,et al.  Ground-based optical atomic clocks as a tool to monitor vertical surface motion , 2015, 1506.02457.

[17]  H. Katori,et al.  Strategies for reducing the light shift in atomic clocks , 2015, 1503.07633.

[18]  Manoj Das,et al.  Cryogenic optical lattice clocks , 2015, Nature Photonics.

[19]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[20]  K. V. Tilburg,et al.  Searching for dilaton dark matter with atomic clocks , 2014, 1405.2925.

[21]  N. K. Pavlis,et al.  A re-evaluation of the relativistic redshift on frequency standards at NIST, Boulder, Colorado, USA , 2014 .

[22]  L M Hanssen,et al.  Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty. , 2014, Physical review letters.

[23]  Jean-Charles Marty,et al.  ESA's satellite‐only gravity field model via the direct approach based on all GOCE data , 2014 .

[24]  P. Zoller,et al.  Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism , 2014, Science.

[25]  M. Pospelov,et al.  Hunting for topological dark matter with atomic clocks , 2013, Nature Physics.

[26]  J. Lodewyck,et al.  Atomic clocks: new prospects in metrology and geodesy , 2013, 1308.6766.

[27]  K. Gibble Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions. , 2013, Physical review letters.

[28]  P. Lemonde,et al.  Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  S. Falke,et al.  Delivering pulsed and phase stable light to atoms of an optical clock , 2011, 1108.3729.

[30]  Y. Wang,et al.  The US Gravimetric Geoid of 2009 (USGG2009): model development and evaluation , 2012, Journal of Geodesy.

[31]  C W Oates,et al.  p-Wave cold collisions in an optical lattice clock. , 2011, Physical review letters.

[32]  Hidetoshi Katori,et al.  Frequency comparison of optical lattice clocks beyond the Dick limit , 2011 .

[33]  Jun Ye,et al.  Suppression of Collisional Shifts in a Strongly Interacting Lattice Clock , 2010, Science.

[34]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[35]  V. Dzuba,et al.  Dynamic polarizabilities and related properties of clock states of the ytterbium atom , 2009, 0908.2278.

[36]  D. Rugar,et al.  Optical clocks and relativity , 2013 .

[37]  C W Oates,et al.  Spin-1/2 optical lattice clock. , 2009, Physical review letters.

[38]  Tomoya Akatsuka,et al.  Optical lattice clocks with non-interacting bosons and fermions , 2008, 2008 IEEE International Frequency Control Symposium.

[39]  Jun Ye,et al.  Nuclear spin effects in optical lattice clocks , 2007, 0704.0912.

[40]  John L. Hall,et al.  Nobel Lecture: Defining and measuring optical frequencies , 2006 .

[41]  John L. Hall,et al.  Defining and Measuring Optical Frequencies , 2006 .

[42]  S. Porsev,et al.  Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks , 2006, physics/0602082.

[43]  P. Lemonde,et al.  Optical lattice clock with atoms confined in a shallow trap (8 pages) , 2005 .

[44]  M. Takamoto,et al.  Ultrastable optical clock with neutral atoms in an engineered light shift trap. , 2003, Physical review letters.

[45]  P. K. Seidelmann,et al.  The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement , 2003, astro-ph/0303376.

[46]  E. A. Curtis,et al.  Quenched narrow-line second- and third-stage laser cooling of 40 Ca , 2002, physics/0208071.

[47]  S. Bize,et al.  Interrogation oscillator noise rejection in the comparison of atomic fountains , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[48]  Robert E. Drullinger,et al.  Systematic errors in cesium beam frequency standards introduced by digital control of the microwave excitation , 1995, Proceedings of the 1995 IEEE International Frequency Control Symposium (49th Annual Symposium).

[49]  L S Ma,et al.  Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. , 1994, Optics letters.

[50]  P. Julienne,et al.  Collisions of ultracold trapped atoms , 1989 .

[51]  Petr Vaníček,et al.  Geodetic leveling and its applications , 1980 .