MARC

Autonomicity is a golden feature when dealing with a high level of complexity. This complexity can be tackled partitioning huge systems in small autonomous modules, i.e., agents. Each agent then needs to be capable of extracting knowledge from its environment and to learn from it, in order to fulfill its goals: this could not be achieved without proper modeling techniques that allow each agent to gaze beyond its sensors. Unfortunately, the simplicity of agents and the complexity of modeling do not fit together, thus demanding for a third party to bridge the gap. Given the opportunities in the field, the main contributions of this work are twofold: (1) we propose a general methodology to model resource consumption trends and (2) we implemented it into MARC, a Cloud-service platform that produces Models-as-a-Service, thus relieving self-aware agents from the burden of building their custom modeling framework. In order to validate the proposed methodology, we set up a custom simulator to generate a wide spectrum of controlled traces: this allowed us to verify the correctness of our framework from a general and comprehensive point of view.