On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data

This paper is concerned about sparse, continuous frequency estimation in line spectral estimation, and focused on developing gridless sparse methods which overcome grid mismatches and correspond to limiting scenarios of existing grid-based approaches, e.g., ℓ1 optimization and SPICE, with an infinitely dense grid. We generalize AST (atomic-norm soft thresholding) to the case of nonconsecutively sampled data (incomplete data) inspired by recent atomic norm based techniques. We present a gridless version of SPICE (gridless SPICE, or GLS), which is applicable to both complete and incomplete data without the knowledge of noise level. We further prove the equivalence between GLS and atomic norm-based techniques under different assumptions of noise. Moreover, we extend GLS to a systematic framework consisting of model order selection and robust frequency estimation, and present feasible algorithms for AST and GLS. Numerical simulations are provided to validate our theoretical analysis and demonstrate performance of our methods compared to existing ones.

[1]  A. Schaeffer Inequalities of A. Markoff and S. Bernstein for polynomials and related functions , 1941 .

[2]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[3]  W. Rudin Real and complex analysis , 1968 .

[4]  Ehud Weinstein,et al.  Parameter estimation of superimposed signals using the EM algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[5]  James P. Reilly,et al.  Detection of the number of signals: a predicted eigen-threshold approach , 1991, IEEE Trans. Signal Process..

[6]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[7]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[8]  Klaus I. Pedersen,et al.  Channel parameter estimation in mobile radio environments using the SAGE algorithm , 1999, IEEE J. Sel. Areas Commun..

[9]  J. Schafer,et al.  Missing data: our view of the state of the art. , 2002, Psychological methods.

[10]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[11]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[12]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  Hansheng Wang,et al.  Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .

[15]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[16]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[17]  Jian Li,et al.  Missing Data Recovery Via a Nonparametric Iterative Adaptive Approach , 2009, IEEE Signal Processing Letters.

[18]  A. Belloni,et al.  Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2010, 1009.5689.

[19]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[20]  Kyuwan Choi,et al.  Detecting the Number of Clusters in n-Way Probabilistic Clustering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Jorma Rissanen,et al.  Minimum Description Length Principle , 2010, Encyclopedia of Machine Learning.

[22]  Jian Li,et al.  Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[24]  R. Cooke Real and Complex Analysis , 2011 .

[25]  Cishen Zhang,et al.  Orthonormal Expansion $\ell_{1}$-Minimization Algorithms for Compressed Sensing , 2011, IEEE Transactions on Signal Processing.

[26]  Dmitriy Shutin,et al.  Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of Multipath Wireless Channels , 2011, IEEE Transactions on Signal Processing.

[27]  Pradeep Ravikumar,et al.  Sparse inverse covariance matrix estimation using quadratic approximation , 2011, MLSLP.

[28]  Jian Li,et al.  New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data , 2011, IEEE Transactions on Signal Processing.

[29]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[30]  Jian Li,et al.  SPICE: A Sparse Covariance-Based Estimation Method for Array Processing , 2011, IEEE Transactions on Signal Processing.

[31]  Petre Stoica,et al.  SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation , 2012, Signal Process..

[32]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[33]  Parikshit Shah,et al.  Compressive sensing off the grid , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[34]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[35]  Qiang Fu,et al.  Compressed Sensing of Complex Sinusoids: An Approach Based on Dictionary Refinement , 2012, IEEE Transactions on Signal Processing.

[36]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[37]  Cishen Zhang,et al.  Robustly Stable Signal Recovery in Compressed Sensing With Structured Matrix Perturbation , 2011, IEEE Transactions on Signal Processing.

[38]  Wenjing Liao,et al.  Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..

[39]  Qiang Fu,et al.  A Fast and Accurate Reconstruction Algorithm for Compressed Sensing of Complex Sinusoids , 2013, IEEE Transactions on Signal Processing.

[40]  Dmitriy Shutin,et al.  Incremental Sparse Bayesian Learning for Parameter Estimation of Superimposed Signals , 2013 .

[41]  Cishen Zhang,et al.  Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference , 2011, IEEE Transactions on Signal Processing.

[42]  Arye Nehorai,et al.  Improved Source Number Detection and Direction Estimation With Nested Arrays and ULAs Using Jackknifing , 2013, IEEE Transactions on Signal Processing.

[43]  Håkan Hjalmarsson,et al.  A Note on the SPICE Method , 2012, IEEE Transactions on Signal Processing.

[44]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[45]  F. Gamboa,et al.  Spike detection from inaccurate samplings , 2013, 1301.5873.

[46]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[47]  Randolph L. Moses,et al.  Dynamic Dictionary Algorithms for Model Order and Parameter Estimation , 2013, IEEE Transactions on Signal Processing.

[48]  Yuxin Chen,et al.  Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.

[49]  Lihua Xie,et al.  Continuous compressed sensing with a single or multiple measurement vectors , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[50]  Cishen Zhang,et al.  A Discretization-Free Sparse and Parametric Approach for Linear Array Signal Processing , 2013, IEEE Transactions on Signal Processing.

[51]  Petre Stoica,et al.  Connection between SPICE and Square-Root LASSO for sparse parameter estimation , 2014, Signal Process..

[52]  Arye Nehorai,et al.  Joint Sparse Recovery Method for Compressed Sensing With Structured Dictionary Mismatches , 2013, IEEE Transactions on Signal Processing.

[53]  Lihua Xie,et al.  Achieving high resolution for super-resolution via reweighted atomic norm minimization , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[54]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[55]  Lihua Xie,et al.  Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.