A Tele-Geomatics Based System and Mobile Object Model for Hazmat Monitoring

In this research, we present a pilot study on creating a real time mobile information system for hazmat telegeomonitoring. We illustrate the integration of the various software components and give an object-oriented model for overall system with real time considerations. The system developed integrates a spatial decision support system that incorporates a significant component to give multi-criteria fuzzy routing. We propose also a framework of mobile object modelling on a multi-modal transportation network. The model is represented by spatio-temporal classes with mobility aspects. We also present a mobile query language with a powerful set of predicates. Our approach is based on the comprehensive framework of the data types. The proposed real time mobile information system can represent the core of a new feasible environmental information system that deals with the management of mobile objects and improves real time spatial decision-making.

[1]  José L. Verdegay,et al.  On Valuation and Optimization Problems in Fuzzy Graphs: A General Approach and Some Particular Cases , 1990, INFORMS J. Comput..

[2]  M. Gondran,et al.  Algèbre linéaire et cheminement dans un graphe , 1975 .

[3]  Azedine Boulmakoul,et al.  First specifications of a telegeomonitoring system for the transportation of hazardous materials , 1999 .

[4]  Maw-Sheng Chern,et al.  The fuzzy shortest path problem and its most vital arcs , 1993 .

[5]  José L. Verdegay,et al.  Fuzzy optimal flow on imprecise structures , 1995 .

[6]  Ouri Wolfson,et al.  A Spatiotemporal Model and Language for Moving Objects on Road Networks , 2001, SSTD.

[7]  M. Gondran,et al.  Linear Algebra in Dioids: A Survey of Recent Results , 1984 .

[8]  Kurt Fedra,et al.  COMPUTER-ASSISTED ROUTING OF DANGEROUS GOODS FOR HAUTE-NORMANDIE , 1993 .

[9]  Markus Schneider,et al.  A foundation for representing and querying moving objects , 2000, TODS.

[10]  Michel Minoux,et al.  Graphes et algorithmes , 1995 .

[11]  D. Dubois,et al.  Algorithmes de plus courts chemins pour traiter des données floues , 1978 .

[12]  M. Gondran,et al.  Path Algebra and Algorithms , 1975 .

[13]  Suleiman A Ashur,et al.  DESIGN OF ROUTING NETWORKS USING GEOGRAPHIC INFORMATION SYSTEMS: APPLICATIONS TO SOLID AND HAZARDOUS WASTE TRANSPORTATION PLANNING , 1995 .

[14]  Cl. Guichard Théorie des réseaux , 1935 .

[15]  M. Minoux,et al.  Structures algébriques généralisées des problèmes de cheminement dans les graphes , 1976 .

[16]  A. Boulmakoul Generalized path-finding algorithms on semirings and the fuzzy shortest path problem , 2004 .

[17]  C. Klein Fuzzy shortest paths , 1991 .

[18]  Azedine Boulmakoul,et al.  Fuzzy graphs modelling for HazMat telegeomonitoring , 2006, Eur. J. Oper. Res..

[19]  Cris Kobryn,et al.  Architecting Systems with UML 2.0 , 2003, IEEE Softw..

[20]  Andrew Jagoe Mobile Location Based Services: Professional Developer Guide , 2002 .

[21]  Markus Schneider,et al.  Spatio-Temporal Predicates , 2002, IEEE Trans. Knowl. Data Eng..

[22]  David Gelperin,et al.  The optimality of A , 1988 .

[23]  Ralf Hartmut Güting,et al.  Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases , 1999, GeoInformatica.

[24]  L. Kóczy Fuzzy graphs in the evaluation and optimization of networks , 1992 .

[25]  H. Prade Using fuzzy set theory in a scheduling problem: A case study , 1979 .