Base sizes for sporadic simple groups

Let G be a permutation group acting on a set Ω. A subset of Ω is a base for G if its pointwise stabilizer in G is trivial. We write b(G) for the minimal size of a base for G. We determine the precise value of b(G) for every primitive almost simple sporadic group G, with the exception of two cases involving the Baby Monster group. As a corollary, we deduce that b(G) ⩽ 7, with equality if and only if G is the Mathieu group M24 in its natural action on 24 points. This settles a conjecture of Cameron.

[1]  Aner Shalev,et al.  Base sizes for simple groups and a conjecture of Cameron , 2009 .

[2]  J. P. James Two point stabilisers of partition actions of linear groups , 2006 .

[3]  Peter J. Cameron Groups, Combinatorics & Geometry: Some open problems on permutation groups , 1992 .

[4]  J. P. James Partition Actions of Symmetric Groups and Regular Bipartite Graphs , 2006 .

[5]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[6]  R. Carter THE SUBGROUP STRUCTURE OF THE FINITE CLASSICAL GROUPS (London Mathematical Society Lecture Note Series 129) , 1991 .

[7]  Charles C. Sims,et al.  Computation with permutation groups , 1971, SYMSAC '71.

[8]  P. Cameron Permutation groups , 1996 .

[9]  Jean-Pierre Serre,et al.  Topics in Galois Theory , 1992 .

[10]  Robert M. Guralnick,et al.  Alternating forms and self-adjoint operators , 2007 .

[11]  Max Neunhöffer,et al.  Enumerating big orbits and an application: B acting on the cosets of Fi23 , 2007 .

[12]  Á. Seress Permutation Group Algorithms , 2003 .

[13]  Aner Shalev,et al.  Simple groups, permutation groups, and probability , 1999 .

[14]  Timothy C. Burness On base sizes for actions of finite classical groups , 2007 .

[15]  The Alperin weight conjecture and Uno’s conjecture for the Monster M, p odd , 2004 .

[16]  Peter J. Cameron,et al.  Permutation Groups: Frontmatter , 1999 .

[17]  Alfred Bochert Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1897 .

[18]  Robert A. Wilson Standard Generators for Sporadic Simple Groups , 1996 .

[19]  R. Wilson The maximal subgroups of Conway's group Co1 , 1983 .

[20]  P. M. Neumann PERMUTATION GROUP ALGORITHMS (Cambridge Tracts in Mathematics 152) By ÁKOS SERESS: 264 pp., £47.50 (US$65.00), ISBN 0-521-66103-X (Cambridge University Press, 2003) , 2004 .

[21]  THE ALPERIN WEIGHT CONJECTURE AND UNO'S CONJECTURE FOR THE BABY MONSTER B, p ODD , 2004 .

[22]  Alfred Bochert Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1889 .

[23]  Marcel Herzog,et al.  Powers and products of conjugacy classes in groups , 1985 .

[24]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[25]  Derek F. Holt,et al.  Computing conjugacy class representatives in permutation groups , 2006 .

[26]  J. Müller On the Action of the Sporadic Simple Baby Monster Group on its Conjugacy Class 2B , 2008 .

[27]  THE CHARACTER TABLE OF A MAXIMAL SUBGROUP OF THE MONSTER , 2007 .

[28]  Timothy C. Burness Fixed point ratios in actions of finite classical groups, I , 2006 .

[29]  William R. Unger,et al.  Computing the character table of a finite group , 2006, J. Symb. Comput..

[30]  John N. Bray,et al.  Explicit representations of maximal subgroups of the Monster , 2006 .

[31]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[32]  Peter J. Cameron,et al.  Random Permutations: Some Group-Theoretic Aspects , 1993, Comb. Probab. Comput..