Base sizes for sporadic simple groups
暂无分享,去创建一个
[1] Aner Shalev,et al. Base sizes for simple groups and a conjecture of Cameron , 2009 .
[2] J. P. James. Two point stabilisers of partition actions of linear groups , 2006 .
[3] Peter J. Cameron. Groups, Combinatorics & Geometry: Some open problems on permutation groups , 1992 .
[4] J. P. James. Partition Actions of Symmetric Groups and Regular Bipartite Graphs , 2006 .
[5] Martin W. Liebeck,et al. The Subgroup Structure of the Finite Classical Groups , 1990 .
[6] R. Carter. THE SUBGROUP STRUCTURE OF THE FINITE CLASSICAL GROUPS (London Mathematical Society Lecture Note Series 129) , 1991 .
[7] Charles C. Sims,et al. Computation with permutation groups , 1971, SYMSAC '71.
[8] P. Cameron. Permutation groups , 1996 .
[9] Jean-Pierre Serre,et al. Topics in Galois Theory , 1992 .
[10] Robert M. Guralnick,et al. Alternating forms and self-adjoint operators , 2007 .
[11] Max Neunhöffer,et al. Enumerating big orbits and an application: B acting on the cosets of Fi23 , 2007 .
[12] Á. Seress. Permutation Group Algorithms , 2003 .
[13] Aner Shalev,et al. Simple groups, permutation groups, and probability , 1999 .
[14] Timothy C. Burness. On base sizes for actions of finite classical groups , 2007 .
[15] The Alperin weight conjecture and Uno’s conjecture for the Monster M, p odd , 2004 .
[16] Peter J. Cameron,et al. Permutation Groups: Frontmatter , 1999 .
[17] Alfred Bochert. Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1897 .
[18] Robert A. Wilson. Standard Generators for Sporadic Simple Groups , 1996 .
[19] R. Wilson. The maximal subgroups of Conway's group Co1 , 1983 .
[20] P. M. Neumann. PERMUTATION GROUP ALGORITHMS (Cambridge Tracts in Mathematics 152) By ÁKOS SERESS: 264 pp., £47.50 (US$65.00), ISBN 0-521-66103-X (Cambridge University Press, 2003) , 2004 .
[21] THE ALPERIN WEIGHT CONJECTURE AND UNO'S CONJECTURE FOR THE BABY MONSTER B, p ODD , 2004 .
[22] Alfred Bochert. Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1889 .
[23] Marcel Herzog,et al. Powers and products of conjugacy classes in groups , 1985 .
[24] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[25] Derek F. Holt,et al. Computing conjugacy class representatives in permutation groups , 2006 .
[26] J. Müller. On the Action of the Sporadic Simple Baby Monster Group on its Conjugacy Class 2B , 2008 .
[27] THE CHARACTER TABLE OF A MAXIMAL SUBGROUP OF THE MONSTER , 2007 .
[28] Timothy C. Burness. Fixed point ratios in actions of finite classical groups, I , 2006 .
[29] William R. Unger,et al. Computing the character table of a finite group , 2006, J. Symb. Comput..
[30] John N. Bray,et al. Explicit representations of maximal subgroups of the Monster , 2006 .
[31] J. Conway,et al. ATLAS of Finite Groups , 1985 .
[32] Peter J. Cameron,et al. Random Permutations: Some Group-Theoretic Aspects , 1993, Comb. Probab. Comput..