General Multiprocessor Task Scheduling: Approximate Solutions in Linear Time

We study the problem of scheduling $n$ independent tasks on a set of $m$ parallel processors, where the execution time of a task is a function of the subset of processors assigned to the task. For any fixed $m$, we propose a fully polynomial approximation scheme that for any fixed $\epsilon > 0$ finds a preemptive schedule of length at most $(1+\epsilon)$ times the optimum in $O(n)$ time. We also discuss the nonpreemptive variant of the problem, and present for any fixed $m$ a polynomial approximation scheme that computes an approximate solution of any fixed accuracy in linear time. In terms of the running time, this linear complexity bound gives a substantial improvement of the best previously known polynomial bound [J. Chen and A. Miranda, SIAM J. Comput., 31 (2001), pp. 1--17].

[1]  Evripidis Bampis,et al.  Scheduling Independent Multiprocessor Tasks , 2002, Algorithmica.

[2]  Jianer Chen,et al.  A polynomial time approximation scheme for general multiprocessor job scheduling (extended abstract) , 1999, STOC '99.

[3]  Klaus Jansen,et al.  Improved Approximation Schemes for Scheduling Unrelated Parallel Machines , 2001, Math. Oper. Res..

[4]  Joseph Y.-T. Leung,et al.  Complexity of Scheduling Parallel Task Systems , 1989, SIAM J. Discret. Math..

[5]  Leonid Khachiyan,et al.  Coordination Complexity of Parallel Price-Directive Decomposition , 1996, Math. Oper. Res..

[6]  Prasoon Tiwari,et al.  Scheduling malleable and nonmalleable parallel tasks , 1994, SODA '94.

[7]  Pravin M. Vaidya,et al.  An algorithm for linear programming which requires O(((m+n)n2+(m+n)1.5n)L) arithmetic operations , 1990, Math. Program..

[8]  Jianer Chen,et al.  A Polynomial Time Approximation Scheme for General Multiprocessor Job Scheduling , 2001, SIAM J. Comput..

[9]  Klaus Jansen,et al.  Approximation Algorithms for General Packing Problems with Modified Logarithmic Potential Function , 2002, IFIP TCS.

[10]  Han Hoogeveen,et al.  Complexity of Scheduling Multiprocessor Tasks with Prespecified Processor Allocations , 1994, Discret. Appl. Math..

[11]  Éva Tardos,et al.  Fast Approximation Algorithms for Fractional Packing and Covering Problems , 1995, Math. Oper. Res..

[12]  Jacek Blazewicz,et al.  Scheduling Multiprocessor Tasks on Three Dedicated Processors , 1992, Inf. Process. Lett..

[13]  Jacek Blazewicz,et al.  Scheduling Multiprocessor Tasks to Minimize Schedule Length , 1986, IEEE Transactions on Computers.

[14]  Maciej Drozdowski,et al.  Scheduling multiprocessor tasks -- An overview , 1996 .

[15]  Lucio Bianco,et al.  Scheduling multiprocessor tasks on a dynamic configuration of dedicated processors , 1995, Ann. Oper. Res..

[16]  Claire Mathieu,et al.  A Near-Optimal Solution to a Two-Dimensional Cutting Stock Problem , 2000, Math. Oper. Res..

[17]  Evripidis Bampis,et al.  Scheduling Independent Multiprocessor Tasks , 1997, ESA.

[18]  Klaus Jansen,et al.  Linear-Time Approximation Schemes for Scheduling Malleable Parallel Tasks , 1999, SODA '99.

[19]  Jianer Chen,et al.  General Multiprocessor Task Scheduling , 1999 .