暂无分享,去创建一个
Klaus H. Maier-Hein | Lena Maier-Hein | Martin Wagner | Annika Reinke | Sebastian Bodenstedt | Peter M. Full | Hellena Hempe | Diana Mindroc Filimon | Patrick Scholz | Thuy Nuong Tran | Pierangela Bruno | Martin Apitz | Stefanie Speidel | Lei Zhu | Lu Wang | Liansheng Wang | Pheng-Ann Heng | Annette Kopp-Schneider | Manuel Wiesenfarth | Zeng-Guang Hou | Gui-Bin Bian | Pablo Arbel'aez | Jiacheng Wang | Hannes Kenngott | Hua-Bin Chen | Enes Hosgor | Fabian Isensee | Tingting Jiang | Yueming Jin | Kadir Kirtac | Sabrina Kletz | Stefan Leger | Zhixuan Li | Zhen-Liang Ni | Klaus Schoeffmann | Ruohua Shi | Michael Stenzel | Isabell Twick | Gutai Wang | Yujie Zhang | Dong Guo | Michael A. Riegler | Peter M. Full | Debesh Jha | Paal Halvorsen | Tobias Ross | Yan-Jie Zhou | Jon Lindstrom Bolmgren | Laura Bravo-S'anchez | Cristina Gonz'alez | Beat P. Muller-Stich | L. Maier-Hein | S. Speidel | H. Kenngott | M. Wagner | P. Heng | Z. Hou | M. Riegler | Yueming Jin | Klaus Maier-Hein | T. Ross | Annika Reinke | M. Apitz | Hellena Hempe | D. Filimon | Patrick Scholz | Pierangela Bruno | Guibin Bian | S. Bodenstedt | J. Bolmgren | Huabin Chen | D. Guo | E. Hosgor | F. Isensee | Debesh Jha | Tingting Jiang | K. Kirtaç | Sabrina Kletz | S. Leger | Zhixuan Li | Zhen-Liang Ni | K. Schoeffmann | Ruohua Shi | Michael Stenzel | I. Twick | Gutai Wang | Jiacheng Wang | Liansheng Wang | Lu Wang | Yujie Zhang | Yan-Jie Zhou | M. Wiesenfarth | A. Kopp-Schneider | P. Halvorsen | P. Arbel'aez | Laura Bravo-S'anchez | Cristina Gonz'alez | Lei Zhu | B. Muller-Stich
[1] L. R. Dice. Measures of the Amount of Ecologic Association Between Species , 1945 .
[2] J. Kiefer,et al. Stochastic Estimation of the Maximum of a Regression Function , 1952 .
[3] L. Shapiro. Connected Component Labeling and Adjacency Graph Construction , 1996 .
[4] J. Ioannidis. Why Most Published Research Findings Are False , 2005, PLoS medicine.
[5] Alistair Moffat,et al. Improvements that don't add up: ad-hoc retrieval results since 1998 , 2009, CIKM.
[6] Luc Van Gool,et al. The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.
[7] Harold W. Kuhn,et al. The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.
[8] Luc Van Gool,et al. The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.
[9] Pietro Perona,et al. Microsoft COCO: Common Objects in Context , 2014, ECCV.
[10] Thomas Brox,et al. U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.
[11] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[12] Michael S. Bernstein,et al. ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.
[13] Jian Sun,et al. Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[14] Sepp Hochreiter,et al. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.
[15] Russell H. Taylor,et al. Surgical data science for next-generation interventions , 2017, Nature Biomedical Engineering.
[16] Hei Law,et al. Surgeon Technical Skill Assessment using Computer Vision based Analysis , 2017, MLHC.
[17] Kaiming He,et al. Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).
[18] Masimba Nyandowe,et al. A New Era of Minimally Invasive Surgery: Progress and Development of Major Technical Innovations in General Surgery Over the Last Decade , 2017, The Surgery Journal.
[19] Thomas Brox,et al. FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[20] Alexey Shvets,et al. TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation , 2018, Computer-Aided Analysis of Gastrointestinal Videos.
[21] Sébastien Ourselin,et al. Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery , 2018, ArXiv.
[22] Klaus H. Maier-Hein,et al. nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation , 2018, Bildverarbeitung für die Medizin.
[23] Aaron Carass,et al. Why rankings of biomedical image analysis competitions should be interpreted with care , 2018, Nature Communications.
[24] George Papandreou,et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.
[25] Valerio De Luca,et al. Augmented visualization with depth perception cues to improve the surgeon’s performance in minimally invasive surgery , 2018, Medical & Biological Engineering & Computing.
[26] Geraint Rees,et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy , 2018, ArXiv.
[27] Lena Maier-Hein,et al. How to Exploit Weaknesses in Biomedical Challenge Design and Organization , 2018, MICCAI.
[28] Lena Maier-Hein,et al. 2017 Robotic Instrument Segmentation Challenge , 2019, ArXiv.
[29] Paolo Dario,et al. Localization strategies for robotic endoscopic capsules: a review , 2019, Expert review of medical devices.
[30] Gustav Burström,et al. Augmented and Virtual Reality Instrument Tracking for Minimally Invasive Spine Surgery: A Feasibility and Accuracy Study. , 2019, Spine.
[31] Andre Esteva,et al. A guide to deep learning in healthcare , 2019, Nature Medicine.
[32] Zeng-Guang Hou,et al. RASNet: Segmentation for Tracking Surgical Instruments in Surgical Videos Using Refined Attention Segmentation Network , 2019, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
[33] Thomas de Lange,et al. ResUNet++: An Advanced Architecture for Medical Image Segmentation , 2019, 2019 IEEE International Symposium on Multimedia (ISM).
[34] Shenghua Gao,et al. CE-Net: Context Encoder Network for 2D Medical Image Segmentation , 2019, IEEE Transactions on Medical Imaging.
[35] Germain Forestier,et al. Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks , 2019, International Journal of Computer Assisted Radiology and Surgery.
[36] Sunita Chauhan,et al. Surgical skill levels: Classification and analysis using deep neural network model and motion signals , 2019, Comput. Methods Programs Biomed..
[37] Ross B. Girshick,et al. Mask R-CNN , 2017, 1703.06870.
[38] Lena Maier-Hein,et al. BIAS: Transparent reporting of biomedical image analysis challenges , 2019, Medical Image Analysis.
[39] Klaus H. Maier-Hein,et al. OR-UNet: an Optimized Robust Residual U-Net for Instrument Segmentation in Endoscopic Images , 2020, ArXiv.
[40] Handbook of Medical Image Computing and Computer Assisted Intervention , 2020 .
[41] Xiao-Liang Xie,et al. BARNet: Bilinear Attention Network with Adaptive Receptive Field for Surgical Instrument Segmentation , 2020, IJCAI.
[42] Ross B. Girshick,et al. Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[43] L. Maier-Hein,et al. Methods and open-source toolkit for analyzing and visualizing challenge results , 2019, Scientific reports.
[44] Yan Wang,et al. The Medical Segmentation Decathlon , 2021, ArXiv.