Numerical analysis of a modified finite element nonlinear Galerkin method

Summary.A fully discrete modified finite element nonlinear Galerkin method is presented for the two-dimensional equation of Navier-Stokes type. The spatial discretization is based on two finite element spaces XH and Xh defined on a coarse grid with grid size H and a fine grid with grid size h << H, respectively; the time discretization is based on the Euler explicit scheme with respect to the nonlinear term. We analyze the stability and convergence rate of the method. Comparing with the standard finite element Galerkin method and the nonlinear Galerkin method, this method can admit a larger time step under the same convergence rate of same order. Hence this method can save a large amount of computational time. Finally, we provide some numerical tests on this method, the standard finite element Galerkin method, and the nonlinear Galerkin method, which are in a good agreement with the theoretical analysis.

[1]  Edriss S. Titi,et al.  Dissipativity of numerical schemes , 1991 .

[2]  Yinnian He,et al.  Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations , 1998 .

[3]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[4]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[5]  Edriss S. Titi,et al.  On the rate of convergence of the nonlinear Galerkin methods , 1993 .

[6]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[7]  R. Rannacher,et al.  On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method , 1993 .

[8]  Yinnian He,et al.  Nonlinear Galerkin method and two‐step method for the Navier‐Stokes equations , 1996 .

[9]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[10]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[11]  M. Marion,et al.  Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .

[12]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .

[13]  Roger Temam,et al.  Navier–Stokes Equations and Nonlinear Functional Analysis: Second Edition , 1995 .

[14]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[15]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[16]  R. Temam,et al.  Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .

[17]  Yinnian He,et al.  An optimal nonlinear Galerkin method with mixed finite elements for the steady Navier‐Stokes equations , 2003 .

[18]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[19]  Christine Bernardi,et al.  A Conforming Finite Element Method for the Time-Dependent Navier–Stokes Equations , 1985 .

[20]  Jie Shen Long time stability and convergence for fully discrete nonlinear galerkin methods , 1990 .

[21]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[22]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .