Class field theory, Hasse principles and Picard-Brauer duality for two-dimensional local rings
暂无分享,去创建一个
[1] Takashi Suzuki. Finite generation of nilpotent quotients of fundamental groups of punctured spectra , 2022, 2207.01563.
[2] Takashi Suzuki. Duality for local fields and sheaves on the category of fields , 2013, Kyoto Journal of Mathematics.
[3] Takashi Suzuki. Arithmetic duality for two-dimensional local rings with perfect residue field , 2021, 2112.06491.
[4] Einzelwerken Muster,et al. Invent , 2021, Encyclopedic Dictionary of Archaeology.
[5] Takashi Suzuki,et al. The relatively perfect Greenberg transform and cycle class maps , 2020, 2009.05084.
[6] Takashi Suzuki. Grothendieck’s pairing on Néron component groups: Galois descent from the semistable case , 2014, Kyoto Journal of Mathematics.
[7] Takashi Suzuki. An improvement of the duality formalism of the rational etale site , 2019, 1902.03540.
[8] 南出 新. 双曲的曲線に関連した副有限群の非分解性について (Algebraic Number Theory and Related Topics 2015) , 2018 .
[9] Dr. P. K. Chaudhary. Accepted , 2018, Definitions.
[10] Zev Rosengarten. Tate Duality In Positive Dimension over Function Fields , 2018, Memoirs of the American Mathematical Society.
[11] Takashi Suzuki. DUALITY FOR COHOMOLOGY OF CURVES WITH COEFFICIENTS IN ABELIAN VARIETIES , 2018, Nagoya Mathematical Journal.
[12] P. Gille,et al. Fibrés principaux sur les corps valués henséliens , 2014 .
[13] Cristian D. González-Avilés,et al. The Greenberg functor revisited , 2013, 1311.0051.
[14] P. Scholze,et al. The pro-\'etale topology for schemes , 2013, 1309.1198.
[15] Kanetomo Sato. Cycle classes for $p$-adic étale Tate twists and the image of $p$-adic regulators , 2010, Documenta Mathematica.
[16] O. Gabber,et al. Pseudo-reductive Groups , 2010 .
[17] Kanetomo Sato. p-adic étale Tate twists and arithmetic duality , 2006, math/0610426.
[18] 柏原 正樹,et al. Categories and Sheaves , 2005 .
[19] B. Guillou,et al. Algebraic K-theory , 2020, Oberwolfach Reports.
[20] Thomas H. Geisser. Weil-étale cohomology over finite fields , 2004, math/0404425.
[21] I. Fesenko. Sequential topologies and quotients of Milnor K -groups of higher local fields , 2002 .
[22] P. Waley,et al. Tokyo , 1997 .
[23] M. Levine. Localization on singular varieties , 1988 .
[24] Kazuya Kato,et al. Duality theories for p-primary etale cohomology III , 2018, 1810.02218.
[25] V. Srinivas. Modules of finite length and Chow groups of surfaces with rational double points , 1987 .
[26] S. Saito. Class Field Theory for Two Dimensional Local Rings , 1987 .
[27] S. Saito. Arithmetic on two dimensional local rings , 1986 .
[28] S. Bloch. Algebraic K-Theory and Classfield Theory for Arithmetic Surfaces , 1981 .
[29] 加藤 和也. A generalization of local class field theory by using K-groups I, II, III = K-群による局所類体論の一般化 , 1980 .
[30] J. Lipman. The picard group of a scheme over an artin ring , 1976 .
[31] J. Lipman. Rational singularities, with applications to algebraic surfaces and unique factorization , 1969 .
[32] Séminaire Bourbaki,et al. Dix exposés sur la cohomologie des schémas , 1968 .