Class field theory, Hasse principles and Picard-Brauer duality for two-dimensional local rings

. We draw concrete consequences from our arithmetic duality for two-dimensional local rings with perfect residue field. These consequences in- clude class field theory, Hasse principles for coverings and K 2 and a duality between divisor class groups and Brauer groups. To obtain these, we analyze the ind-pro-algebraic group structures on arithmetic cohomology obtained ear-lier and prove some finiteness properties about them.

[1]  Takashi Suzuki Finite generation of nilpotent quotients of fundamental groups of punctured spectra , 2022, 2207.01563.

[2]  Takashi Suzuki Duality for local fields and sheaves on the category of fields , 2013, Kyoto Journal of Mathematics.

[3]  Takashi Suzuki Arithmetic duality for two-dimensional local rings with perfect residue field , 2021, 2112.06491.

[4]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[5]  Takashi Suzuki,et al.  The relatively perfect Greenberg transform and cycle class maps , 2020, 2009.05084.

[6]  Takashi Suzuki Grothendieck’s pairing on Néron component groups: Galois descent from the semistable case , 2014, Kyoto Journal of Mathematics.

[7]  Takashi Suzuki An improvement of the duality formalism of the rational etale site , 2019, 1902.03540.

[8]  南出 新 双曲的曲線に関連した副有限群の非分解性について (Algebraic Number Theory and Related Topics 2015) , 2018 .

[9]  Dr. P. K. Chaudhary Accepted , 2018, Definitions.

[10]  Zev Rosengarten Tate Duality In Positive Dimension over Function Fields , 2018, Memoirs of the American Mathematical Society.

[11]  Takashi Suzuki DUALITY FOR COHOMOLOGY OF CURVES WITH COEFFICIENTS IN ABELIAN VARIETIES , 2018, Nagoya Mathematical Journal.

[12]  P. Gille,et al.  Fibrés principaux sur les corps valués henséliens , 2014 .

[13]  Cristian D. González-Avilés,et al.  The Greenberg functor revisited , 2013, 1311.0051.

[14]  P. Scholze,et al.  The pro-\'etale topology for schemes , 2013, 1309.1198.

[15]  Kanetomo Sato Cycle classes for $p$-adic étale Tate twists and the image of $p$-adic regulators , 2010, Documenta Mathematica.

[16]  O. Gabber,et al.  Pseudo-reductive Groups , 2010 .

[17]  Kanetomo Sato p-adic étale Tate twists and arithmetic duality , 2006, math/0610426.

[18]  柏原 正樹,et al.  Categories and Sheaves , 2005 .

[19]  B. Guillou,et al.  Algebraic K-theory , 2020, Oberwolfach Reports.

[20]  Thomas H. Geisser Weil-étale cohomology over finite fields , 2004, math/0404425.

[21]  I. Fesenko Sequential topologies and quotients of Milnor K -groups of higher local fields , 2002 .

[22]  P. Waley,et al.  Tokyo , 1997 .

[23]  M. Levine Localization on singular varieties , 1988 .

[24]  Kazuya Kato,et al.  Duality theories for p-primary etale cohomology III , 2018, 1810.02218.

[25]  V. Srinivas Modules of finite length and Chow groups of surfaces with rational double points , 1987 .

[26]  S. Saito Class Field Theory for Two Dimensional Local Rings , 1987 .

[27]  S. Saito Arithmetic on two dimensional local rings , 1986 .

[28]  S. Bloch Algebraic K-Theory and Classfield Theory for Arithmetic Surfaces , 1981 .

[29]  加藤 和也 A generalization of local class field theory by using K-groups I, II, III = K-群による局所類体論の一般化 , 1980 .

[30]  J. Lipman The picard group of a scheme over an artin ring , 1976 .

[31]  J. Lipman Rational singularities, with applications to algebraic surfaces and unique factorization , 1969 .

[32]  Séminaire Bourbaki,et al.  Dix exposés sur la cohomologie des schémas , 1968 .