AI Poincaré: Machine Learning Conservation Laws from Trajectories

We present AI Poincaré, a machine learning algorithm for autodiscovering conserved quantities using trajectory data from unknown dynamical systems. We test it on five Hamiltonian systems, including the gravitational three-body problem, and find that it discovers not only all exactly conserved quantities, but also periodic orbits, phase transitions, and breakdown timescales for approximate conservation laws.

[1]  Aapo Hyvärinen,et al.  Neural Empirical Bayes , 2019, J. Mach. Learn. Res..

[2]  M. S. Albergo,et al.  Flow-based generative models for Markov chain Monte Carlo in lattice field theory , 2019, Physical Review D.

[3]  Marios Mattheakis,et al.  Physical Symmetries Embedded in Neural Networks , 2019, ArXiv.

[4]  J. Wells Effective Theories and Elementary Particle Masses , 2012 .

[5]  Marin Soljacic,et al.  Extracting Interpretable Physical Parameters from Spatiotemporal Systems using Unsupervised Learning , 2019, Physical Review X.

[6]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[7]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[8]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[9]  Miles Cranmer,et al.  Lagrangian Neural Networks , 2020, ICLR 2020.

[10]  Hui Zhai,et al.  Deep learning topological invariants of band insulators , 2018, Physical Review B.

[11]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[12]  Edwin R. Hancock,et al.  Spectral embedding of graphs , 2003, Pattern Recognit..

[13]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[14]  Rui Xu,et al.  Discovering Symbolic Models from Deep Learning with Inductive Biases , 2020, NeurIPS.

[15]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[16]  Aurélien Decelle,et al.  Learning a Gauge Symmetry with Neural Networks , 2019, Physical review. E.

[17]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[18]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[19]  Vijay Ganesh,et al.  Discovering Symmetry Invariants and Conserved Quantities by Interpreting Siamese Neural Networks , 2020, Physical Review Research.

[20]  Max Tegmark,et al.  AI Feynman: A physics-inspired method for symbolic regression , 2019, Science Advances.

[21]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[22]  Austen Lamacraft,et al.  Learning Symmetries of Classical Integrable Systems , 2019, ArXiv.

[23]  Jason Yosinski,et al.  Hamiltonian Neural Networks , 2019, NeurIPS.

[24]  Yoh-ichi Mototake Interpretable Conservation Law Estimation by Deriving the Symmetries of Dynamics from Trained Deep Neural Networks , 2020, ArXiv.

[25]  Roy S. Berns,et al.  A review of principal component analysis and its applications to color technology , 2005 .

[26]  Analytical study of chaos and applications , 2016, 1603.09515.

[27]  Toshio Okada,et al.  A numerical analysis of chaos in the double pendulum , 2006 .

[28]  Vladimir Ceperic,et al.  Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery , 2021, IEEE Transactions on Neural Networks and Learning Systems.

[29]  H. Stöcker,et al.  An equation-of-state-meter of quantum chromodynamics transition from deep learning , 2018, Nature Communications.

[30]  Laurence Perreault Levasseur,et al.  Fast automated analysis of strong gravitational lenses with convolutional neural networks , 2017, Nature.

[31]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[32]  Max Tegmark,et al.  AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity , 2020, NeurIPS.

[33]  Jan Peters,et al.  Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning , 2019, ICLR.

[34]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.