Towards realistic theories of learning

[1]  Naoki Abe,et al.  Efficient distribution-free population learning of simple concepts , 1994, Annals of Mathematics and Artificial Intelligence.

[2]  Naoki Abe,et al.  On the computational complexity of approximating distributions by probabilistic automata , 1990, Machine Learning.

[3]  D. Haussler,et al.  Stochastic context-free grammars for modeling RNA , 1993, 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.

[4]  Naoki Abe,et al.  A New Method for Predicting Protein Secondary Structures Based on Stochastic Tree Grammars , 1994, ICML.

[5]  Naoki Abe,et al.  Exact Learning of Linear Combinations of Monotone Terms from Function Value Queries , 1995, ALT.

[6]  Naoki Abe,et al.  The “lob-pass” problem and an on-line learning model of rational choice , 1993, COLT '93.

[7]  H. Sebastian Seung,et al.  Learning from a Population of Hypotheses , 1993, COLT '93.

[8]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[9]  David Haussler,et al.  Using Dirichlet Mixture Priors to Derive Hidden Markov Models for Protein Families , 1993, ISMB.

[10]  David Haussler,et al.  Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..

[11]  Yves Schabes,et al.  Stochastic Lexicalized Tree-adjoining Grammars , 1992, COLING.

[12]  N. Abe On the computational compulexity of approximating probability distributions by probabilistic automata , 1992 .

[13]  Dana Angluin,et al.  When won't membership queries help? , 1991, STOC '91.

[14]  C. Sander,et al.  Database of homology‐derived protein structures and the structural meaning of sequence alignment , 1991, Proteins.

[15]  Akihiko Konagaya,et al.  Learning Stochastic Motifs from Genetic Sequences , 1991, ML.

[16]  Robert E. Schapire,et al.  Efficient distribution-free learning of probabilistic concepts , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[17]  Robert E. Schapire,et al.  On the sample complexity of weak learning , 1990, COLT '90.

[18]  Kenji Yamanishi,et al.  A learning criterion for stochastic rules , 1990, COLT '90.

[19]  Daniel N. Osherson,et al.  Systems That Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists , 1990 .

[20]  R. Herrnstein Rational Choice Theory Necessary but Not Sufficient , 1990 .

[21]  Robert H. Sloan,et al.  Computational learning theory: new models and algorithms , 1989 .

[22]  Jeffrey Scott Vitter,et al.  Learning in parallel , 1988, COLT '88.

[23]  Philip D. Laird,et al.  Efficient unsupervised learning , 1988, COLT '88.

[24]  Naoki Abe,et al.  Feasible Learnability of Formal Grammars and The Theory of Natural Language Acquisition , 1988, COLING.

[25]  J. Rissanen Stochastic Complexity and Modeling , 1986 .

[26]  Aravind K. Joshi,et al.  Some Computational Properties of Tree Adjoining Grammars , 1985, ACL.

[27]  D. Pollard Convergence of stochastic processes , 1984 .

[28]  L. R. Rabiner,et al.  An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition , 1983, The Bell System Technical Journal.

[29]  Azaria Paz,et al.  Introduction to Probabilistic Automata , 1971 .