Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities

In this work we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. For this we use optimal transport methods and the Borell-Brascamp-Lieb inequality. These refinements can be written as a deficit in the classical inequalities. They have the right scale with respect to the dimension. They lead to sharpened concentration properties as well as refined contraction bounds, convergence to equilibrium and short time behaviour for the laws of solutions to stochastic differential equations.

[1]  Ronen Eldan A two-sided estimate for the Gaussian noise stability deficit , 2013, 1307.2781.

[2]  I. Gentil Dimensional Contraction in Wasserstein Distance for Diffusion Semigroups on a Riemannian Manifold , 2013, 1310.4264.

[3]  C. Villani Optimal Transport: Old and New , 2008 .

[4]  Karl-Theodor Sturm,et al.  On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces , 2013, 1303.4382.

[5]  Dario Cordero-Erausquin,et al.  Transport Inequalities for Log-concave Measures, Quantitative Forms, and Applications , 2017, Canadian Journal of Mathematics.

[6]  L. Goldstein,et al.  Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner Formula , 2014, 1411.6265.

[7]  A. Figalli,et al.  A Sharp Stability Result for the Relative Isoperimetric Inequality Inside Convex Cones , 2012, 1210.3113.

[8]  Max Fathi,et al.  Quantitative logarithmic Sobolev inequalities and stability estimates , 2014, 1410.6922.

[9]  Diego Marcon,et al.  A quantitative log-Sobolev inequality for a two parameter family of functions , 2013, 1302.4910.

[10]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[11]  I. Gentil The general optimal Lp-Euclidean logarithmic Sobolev inequality by Hamilton–Jacobi equations , 2003 .

[12]  A. Figalli,et al.  Quantitative stability for the Brunn-Minkowski inequality , 2014, 1502.06513.

[13]  A. Guillin,et al.  Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition , 2015, 1510.07793.

[14]  S. Bobkov,et al.  From Brunn–Minkowski to sharp Sobolev inequalities , 2008 .

[15]  F. Barthe,et al.  Mass Transport and Variants of the Logarithmic Sobolev Inequality , 2007, 0709.3890.

[16]  S. Bobkov,et al.  Hypercontractivity of Hamilton-Jacobi equations , 2001 .

[17]  Cyril Roberto,et al.  Bounds on the deficit in the logarithmic Sobolev inequality , 2014, 1408.2115.

[18]  Michel Ledoux,et al.  A logarithmic Sobolev form of the Li-Yau parabolic inequality , 2006 .

[19]  C. Villani Topics in Optimal Transportation , 2003 .

[20]  A. Figalli,et al.  A mass transportation approach to quantitative isoperimetric inequalities , 2010 .

[21]  Ivan Gentil,et al.  Dimension dependent hypercontractivity for Gaussian kernels , 2012 .

[22]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[23]  A. Joulin,et al.  Intertwinings and generalized Brascamp–Lieb inequalities , 2016, Revista Matemática Iberoamericana.

[24]  S. Bobkov,et al.  From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .

[25]  A. Figalli,et al.  Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation , 2013 .

[26]  S. Bobkov,et al.  Weighted poincaré-type inequalities for cauchy and other convex measures , 2009, 0906.1651.

[27]  Dario Cordero-Erausquin,et al.  Some Applications of Mass Transport to Gaussian-Type Inequalities , 2002 .

[28]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[29]  Reinforcement of an inequality due to Brascamp and Lieb , 2008 .

[30]  I. Gentil From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality , 2007, 0710.5025.

[31]  Manuel del Pino,et al.  The optimal Euclidean Lp-Sobolev logarithmic inequality , 2003 .

[32]  Sara Daneri,et al.  Lecture notes on gradient flows and optimal transport , 2010, Optimal Transport.

[33]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[34]  E. Carlen Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .

[35]  S. Lisini Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces , 2009 .

[36]  Arnaud Guillin,et al.  Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations , 2011 .

[37]  Arnaud Guillin,et al.  Dimensional contraction via Markov transportation distance , 2013, J. Lond. Math. Soc..

[38]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .