Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities
暂无分享,去创建一个
[1] Ronen Eldan. A two-sided estimate for the Gaussian noise stability deficit , 2013, 1307.2781.
[2] I. Gentil. Dimensional Contraction in Wasserstein Distance for Diffusion Semigroups on a Riemannian Manifold , 2013, 1310.4264.
[3] C. Villani. Optimal Transport: Old and New , 2008 .
[4] Karl-Theodor Sturm,et al. On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces , 2013, 1303.4382.
[5] Dario Cordero-Erausquin,et al. Transport Inequalities for Log-concave Measures, Quantitative Forms, and Applications , 2017, Canadian Journal of Mathematics.
[6] L. Goldstein,et al. Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner Formula , 2014, 1411.6265.
[7] A. Figalli,et al. A Sharp Stability Result for the Relative Isoperimetric Inequality Inside Convex Cones , 2012, 1210.3113.
[8] Max Fathi,et al. Quantitative logarithmic Sobolev inequalities and stability estimates , 2014, 1410.6922.
[9] Diego Marcon,et al. A quantitative log-Sobolev inequality for a two parameter family of functions , 2013, 1302.4910.
[10] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[11] I. Gentil. The general optimal Lp-Euclidean logarithmic Sobolev inequality by Hamilton–Jacobi equations , 2003 .
[12] A. Figalli,et al. Quantitative stability for the Brunn-Minkowski inequality , 2014, 1502.06513.
[13] A. Guillin,et al. Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition , 2015, 1510.07793.
[14] S. Bobkov,et al. From Brunn–Minkowski to sharp Sobolev inequalities , 2008 .
[15] F. Barthe,et al. Mass Transport and Variants of the Logarithmic Sobolev Inequality , 2007, 0709.3890.
[16] S. Bobkov,et al. Hypercontractivity of Hamilton-Jacobi equations , 2001 .
[17] Cyril Roberto,et al. Bounds on the deficit in the logarithmic Sobolev inequality , 2014, 1408.2115.
[18] Michel Ledoux,et al. A logarithmic Sobolev form of the Li-Yau parabolic inequality , 2006 .
[19] C. Villani. Topics in Optimal Transportation , 2003 .
[20] A. Figalli,et al. A mass transportation approach to quantitative isoperimetric inequalities , 2010 .
[21] Ivan Gentil,et al. Dimension dependent hypercontractivity for Gaussian kernels , 2012 .
[22] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[23] A. Joulin,et al. Intertwinings and generalized Brascamp–Lieb inequalities , 2016, Revista Matemática Iberoamericana.
[24] S. Bobkov,et al. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .
[25] A. Figalli,et al. Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation , 2013 .
[26] S. Bobkov,et al. Weighted poincaré-type inequalities for cauchy and other convex measures , 2009, 0906.1651.
[27] Dario Cordero-Erausquin,et al. Some Applications of Mass Transport to Gaussian-Type Inequalities , 2002 .
[28] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[29] Reinforcement of an inequality due to Brascamp and Lieb , 2008 .
[30] I. Gentil. From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality , 2007, 0710.5025.
[31] Manuel del Pino,et al. The optimal Euclidean Lp-Sobolev logarithmic inequality , 2003 .
[32] Sara Daneri,et al. Lecture notes on gradient flows and optimal transport , 2010, Optimal Transport.
[33] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[34] E. Carlen. Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .
[35] S. Lisini. Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces , 2009 .
[36] Arnaud Guillin,et al. Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations , 2011 .
[37] Arnaud Guillin,et al. Dimensional contraction via Markov transportation distance , 2013, J. Lond. Math. Soc..
[38] M. Talagrand. Transportation cost for Gaussian and other product measures , 1996 .