Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals

A central limit theorem for bilinear forms of the type a ? C ? N ( ? ) - 1 b , where a , b ? C N are unit norm deterministic vectors and C ? N ( ? ) a robust-shrinkage estimator of scatter parametrized by ? and built upon n independent elliptical vector observations, is presented. The fluctuations of a ? C ? N ( ? ) - 1 b are found to be of order N - 1 2 and to be the same as those of a ? S ? N ( ? ) - 1 b for S ? N ( ? ) a matrix of a theoretical tractable form. This result is exploited in a classical signal detection problem to provide an improved detector which is both robust to elliptical data observations (e.g., impulsive noise) and optimized across the shrinkage parameter ? .

[1]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[2]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[3]  Noureddine El Karoui,et al.  Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.

[4]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[5]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[6]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[7]  Olivier Besson,et al.  Regularized Covariance Matrix Estimation in Complex Elliptically Symmetric Distributions Using the Expected Likelihood Approach— Part 1: The Over-Sampled Case , 2013, IEEE Transactions on Signal Processing.

[8]  Romain Couillet Robust spiked random matrices and a robust G-MUSIC estimator , 2015, J. Multivar. Anal..

[9]  Mohamed-Slim Alouini,et al.  Optimal Design of the Adaptive Normalized Matched Filter Detector Using Regularized Tyler Estimators , 2018, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Walid Hachem,et al.  The outliers among the singular values of large rectangular random matrices with additive fixed rank deformation , 2012, 1207.0471.

[11]  Jianfeng Yao,et al.  Fluctuations for linear spectral statistics of large random covariance matrices , 2013, 2014 22nd European Signal Processing Conference (EUSIPCO).

[12]  Philippe Loubaton,et al.  A New Approach for Mutual Information Analysis of Large Dimensional Multi-Antenna Channels , 2008, IEEE Transactions on Information Theory.

[13]  R. Couillet,et al.  Analysis of the limiting spectral measure of large random matrices of the separable covariance type , 2013, 1310.8094.

[14]  J. W. Silverstein,et al.  Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .

[15]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[16]  Xavier Mestre,et al.  On the Asymptotic Behavior of the Sample Estimates of Eigenvalues and Eigenvectors of Covariance Matrices , 2008, IEEE Transactions on Signal Processing.

[17]  Marco Lops,et al.  Asymptotically optimum radar detection in compound-Gaussian clutter , 1995 .

[18]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[19]  Xiuyuan Cheng,et al.  Marchenko-Pastur Law for Tyler's and Maronna's M-estimators , 2014 .

[20]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[21]  Matthew R. McKay,et al.  Minimum variance portfolio optimization with robust shrinkage covariance estimation , 2014, 2014 48th Asilomar Conference on Signals, Systems and Computers.

[22]  Noureddine El Karoui,et al.  Asymptotic behavior of unregularized and ridge-regularized high-dimensional robust regression estimators : rigorous results , 2013, 1311.2445.

[23]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[24]  Philippe Loubaton,et al.  A New Approach for Capacity Analysis of Large Dimensional Multi-Antenna Channels , 2006, ArXiv.

[25]  Jianfeng Yao,et al.  GAUSSIAN FLUCTUATIONS FOR LINEAR SPECTRAL STATISTICS OF LARGE RANDOM COVARIANCE MATRICES By , 2016 .

[26]  Yacine Chitour,et al.  Generalized Robust Shrinkage Estimator and Its Application to STAP Detection Problem , 2013, IEEE Transactions on Signal Processing.

[27]  Alfred O. Hero,et al.  Robust Shrinkage Estimation of High-Dimensional Covariance Matrices , 2010, IEEE Transactions on Signal Processing.

[28]  A. Hero,et al.  Robust Shrinkage Estimation of High-Dimensional , 2011 .

[29]  Romain Couillet,et al.  The random matrix regime of Maronna's M-estimator with elliptically distributed samples , 2013, J. Multivar. Anal..

[30]  Walid Hachem,et al.  On the isolated eigenvalues of large Gram random matrices with a fixed rank deformation , 2012 .

[31]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[32]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[33]  Matthew R. McKay,et al.  Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators , 2014, J. Multivar. Anal..

[34]  Walid Hachem,et al.  A Central Limit Theorem for the SINR at the LMMSE Estimator Output for Large-Dimensional Signals , 2008, IEEE Transactions on Information Theory.

[35]  Romain Couillet,et al.  Robust Estimates of Covariance Matrices in the Large Dimensional Regime , 2012, IEEE Transactions on Information Theory.

[36]  David E. Tyler A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .