The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field

[1]  Johan Sjöstrand,et al.  The relation between resolution measurements and numbers of retinal ganglion cells in the same human subjects , 2005, Vision Research.

[2]  Martha Neuringer,et al.  Nutritional manipulation of primate retinas, II: effects of age, n-3 fatty acids, lutein, and zeaxanthin on retinal pigment epithelium. , 2004, Investigative ophthalmology & visual science.

[3]  S. Schein,et al.  Macaque Retina Contains an S-Cone OFF Midget Pathway , 2003, The Journal of Neuroscience.

[4]  Kareem M. Ahmad,et al.  Cell density ratios in a foveal patch in macaque retina , 2003, Visual Neuroscience.

[5]  M. Tamai,et al.  Müller cells in the human foveal region , 2001, Current eye research.

[6]  J. Sjöstrand,et al.  Morphometric study of the displacement of retinal ganglion cells subserving cones within the human fovea , 1999, Graefe's Archive for Clinical and Experimental Ophthalmology.

[7]  J. Sjöstrand,et al.  Quantitative estimations of foveal and extra-foveal retinal circuitry in humans , 1999, Vision Research.

[8]  A. Cowey,et al.  Models of ganglion cell topography in the retina of macaque monkeys and their application to sensory cortical scaling , 1996, Neuroscience.

[9]  B. B. Lee,et al.  Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus , 1996, Visual Neuroscience.

[10]  Paul R. Martin,et al.  Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus , 1996, The Journal of comparative neurology.

[11]  J. Sjöstrand,et al.  How many ganglion cells are there to a foveal cone? , 1994, Graefe's Archive for Clinical and Experimental Ophthalmology.

[12]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[13]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  C. Curcio,et al.  Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. , 1993, Investigative ophthalmology & visual science.

[15]  J. Sjöstrand,et al.  A morphometric and stereologic analysis of ganglion cells of the central human retina , 1993, Graefe's Archive for Clinical and Experimental Ophthalmology.

[16]  C. Curcio,et al.  Retinal ganglion cells in Alzheimer's disease and aging , 1993, Annals of neurology.

[17]  B. Boycott,et al.  Parasol (Pα) ganglion-cells of the primate fovea: Immunocytochemical staining with antibodies against GABAA-receptors , 1993, Vision Research.

[18]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[19]  V. Perry,et al.  The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina , 1991, Neuroscience.

[20]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[21]  H. Kolb,et al.  Midget ganglion cells of the parafovea of the human retina: A Study by electron microscopy and serial section reconstructions , 1991, The Journal of comparative neurology.

[22]  W N Charman,et al.  A simple parametric model of the human ocular modulation transfer function , 1991, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[23]  B. Boycott,et al.  Retinal ganglion cell density and cortical magnification factor in the primate , 1990, Vision Research.

[24]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[25]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[26]  N. Drasdo,et al.  Receptive field densities of the ganglion cells of the human retina , 1989, Vision Research.

[27]  L. Spillmann,et al.  Visual Perception: The Neurophysiological Foundations , 1989 .

[28]  WH Merigan,et al.  Chromatic and achromatic vision of macaques: role of the P pathway , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  David Williams Topography of the foveal cone mosaic in the living human eye , 1988, Vision Research.

[30]  Burton Chance,et al.  The Retina , 1988 .

[31]  A. Cowey,et al.  The lengths of thefibres of henle in the retina of macaque monkeys: Implications for vision , 1988, Neuroscience.

[32]  S. Schein Anatomy of macaque fovea and spatial densities of neurons in foveal representation , 1988, The Journal of comparative neurology.

[33]  S. Klein,et al.  Position sense of the peripheral retina. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[34]  S. Klein,et al.  Vernier acuity, crowding and cortical magnification , 1985, Vision Research.

[35]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[36]  A. Cowey,et al.  Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey , 1984, Neuroscience.

[37]  B. Boycott,et al.  A spatial analysis of on- and off-ganglion cells in the cat retina , 1983, Vision Research.

[38]  W. Charman,et al.  Off-axis image quality in the human eye , 1981, Vision Research.

[39]  N. Drasdo The neural representation of visual space , 1977, Nature.

[40]  A C Bird,et al.  Histopathology of ruby and argon laser lesions in monkey and human retina. A comparative study. , 1975, The British journal of ophthalmology.

[41]  L. Missotten Estimation of the ratio of cones to neurons in the fovea of the human retina. , 1974, Investigative ophthalmology.

[42]  R Hilz,et al.  Functional organization of the peripheral retina: sensitivity to periodic stimuli. , 1974, Vision research.

[43]  N Drasdo,et al.  Non-linear projection of the retinal image in a wide-angle schematic eye. , 1974, The British journal of ophthalmology.

[44]  D. G. Green Regional variations in the visual acuity for interference fringes on the retina , 1970, The Journal of physiology.

[45]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[46]  F. W. Weymouth,et al.  VISUAL SENSORY UNITS AND THE MINIMUM ANGLE OF RESOLUTION , 1963 .

[47]  F. W. Weymouth Visual sensory units and the minimal angle of resolution. , 1958, American journal of ophthalmology.

[48]  Susana Marcos,et al.  Image Quality of the Human Eye , 2003, International ophthalmology clinics.

[49]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[50]  Jyrki Rovamo,et al.  THE PERCEPTION OF FORM , 1990 .

[51]  Hugh R. Wilson,et al.  10 – THE PERCEPTION OF FORM: Retina to Striate Cortex , 1989 .

[52]  John H. R. Maunsell,et al.  Functions of the ON and OFF channels of the visual system , 1986, Nature.

[53]  B. Ekman [Fiber optics]. , 1970, Tidning. Sveriges Tandlakarforbund.

[54]  Vision Research , 1961, Nature.