Static hedging under maturity mismatch

Can shorter maturity European options be statically hedged with longer maturity plain vanilla options? This problem appears, for example, when analysing options on forwards in relation to liquid options on the spot underlying. Under mild assumptions on the underlying security price process and the option’s payoff function, we show that approximate static hedges exist and we provide a recipe for constructing them. Examples illustrate the power of the hedge and its sensitivity to modelling assumptions. The results can be extended to formulating semi-static hedging strategies for discretely monitored path-dependent contingent claims.

[1]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[2]  P. Hansen Discrete Inverse Problems: Insight and Algorithms , 2010 .

[3]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[4]  W. Schoutens Lévy Processes in Finance , 2003 .

[5]  P. Carr,et al.  Option Pricing, Interest Rates and Risk Management: Towards a Theory of Volatility Trading , 2001 .

[6]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[7]  R. Cooke Real and Complex Analysis , 2011 .

[8]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[9]  Matthias R. Fengler,et al.  Static versus dynamic hedges: an empirical comparison for barrier options , 2006 .

[10]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[11]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[12]  David C. Nachman Spanning and Completeness with Options , 1988 .

[13]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[14]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  Static versus Dynamic Hedging of Exotic Options: An Evaluation of Hedge Performance via Simulation , 2002 .

[16]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[17]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[18]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[19]  Roger Lee Option Pricing by Transform Methods: Extensions, Unification, and Error Control , 2004 .

[20]  Emanuel Derman,et al.  Static Options Replication , 1995 .

[21]  E. Eberlein Application of Generalized Hyperbolic Lévy Motions to Finance , 2001 .

[22]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[23]  E. Eberlein,et al.  Some Analytic Facts on the Generalized Hyperbolic Model , 2001 .

[24]  P. Carr,et al.  Static Hedging of Exotic Options , 1998 .

[25]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[26]  Robert A. Jarrow,et al.  Spanning and Completeness in Markets with Contingent Claims , 1987 .

[27]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[28]  Bruno Dupire Pricing with a Smile , 1994 .

[29]  Liuren Wu,et al.  Static Hedging of Standard Options , 2004 .

[30]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[31]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[32]  R. Poulsen,et al.  Static hedging and model risk for barrier options , 2006 .

[33]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[34]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[35]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[36]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .