Numerical solution of hypersonic flows via artificial neural networks

[1]  William E. Faller,et al.  Unsteady Fluid Mechanics Applications of Neural Networks , 1997 .

[2]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[3]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  W. Bailey,et al.  Vibration-Dissociation Coupling Using Master Equations in Nonequilibrium Hypersonic Blunt-Body Flow , 2001 .

[5]  Marco Panesi,et al.  General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures. , 2015, The Journal of chemical physics.

[6]  Jiwen Lu,et al.  PCANet: A Simple Deep Learning Baseline for Image Classification? , 2014, IEEE Transactions on Image Processing.

[7]  J. M. Burt,et al.  Multiquantum Transitions in Oxygen and Nitrogen Molecules in Hypersonic Nonequilibrium Flows , 2019, Journal of Thermophysics and Heat Transfer.

[8]  SchmidhuberJürgen Deep learning in neural networks , 2015 .

[9]  P. Vedula,et al.  High-Order Techniques for Multi-Component Turbulent Non-Equilibrium Hypersonic Flows , 2020 .

[10]  R. Kummler,et al.  Relaxation by Vibration–Vibration Exchange Processes. Part II. Binary Mixtures , 1968 .

[11]  Xiaoou Tang,et al.  Learning a Deep Convolutional Network for Image Super-Resolution , 2014, ECCV.

[13]  P. Vedula,et al.  HyperCode: A framework for high-order accurate turbulent non-equilibrium hypersonic flow simulations , 2020, AIAA Scitech 2020 Forum.

[14]  Brian Kingsbury,et al.  New types of deep neural network learning for speech recognition and related applications: an overview , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.