Hypersonic‐Induced 3D Hydrodynamic Tweezers for Versatile Manipulations of Micro/Nanoscale Objects

[1]  Daniel Ahmed,et al.  Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[2]  M W Berns,et al.  Parametric study of the forces on microspheres held by optical tweezers. , 1994, Applied optics.

[3]  Wei Pang,et al.  Localized ultrahigh frequency acoustic fields induced micro-vortices for submilliseconds microfluidic mixing , 2016 .

[4]  Alexandra Boltasseva,et al.  Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. , 2016, Nature nanotechnology.

[5]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[6]  Daniel Ahmed,et al.  Rotational manipulation of single cells and organisms using acoustic waves , 2016, Nature Communications.

[7]  Charles M Schroeder,et al.  Stokes trap for multiplexed particle manipulation and assembly using fluidics , 2016, Proceedings of the National Academy of Sciences.

[8]  R. M. Westervelt,et al.  Dielectrophoresis tweezers for single cell manipulation , 2006, Biomedical microdevices.

[9]  Y. Fu,et al.  Scaling effects on flow hydrodynamics of confined microdroplets induced by Rayleigh surface acoustic wave , 2012 .

[10]  Hongbao Xin,et al.  Massive assembly and migration of nanoparticles by laser-induced vortex flows , 2013 .

[11]  David J. Collins,et al.  Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields. , 2016, Analytical chemistry.

[12]  Joseph Wang,et al.  Swimming Microrobot Optical Nanoscopy. , 2016, Nano letters.

[13]  M. Cecchini,et al.  Nanoliter-Droplet Acoustic Streaming via Ultra High Frequency Surface Acoustic Waves , 2014, Advanced materials.

[14]  Joel Voldman,et al.  Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping , 2016, Nature Communications.

[15]  J. Voldman Electrical forces for microscale cell manipulation. , 2006, Annual review of biomedical engineering.

[16]  Mincheng Zhong,et al.  Trapping red blood cells in living animals using optical tweezers , 2013, Nature Communications.

[17]  T. Huang,et al.  Acoustic separation of circulating tumor cells , 2015, Proceedings of the National Academy of Sciences.

[18]  David J. Collins,et al.  Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves , 2015, Nature Communications.

[19]  Francesco De Angelis,et al.  Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation , 2007 .

[20]  Jin Ho Jung,et al.  Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. , 2016, Lab on a chip.

[21]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[22]  Eric Diller,et al.  Biomedical Applications of Untethered Mobile Milli/Microrobots , 2015, Proceedings of the IEEE.

[23]  Y. Fu,et al.  Frequency effect on streaming phenomenon induced by Rayleigh surface acoustic wave in microdroplets , 2012 .

[24]  Régis Marchiano,et al.  Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. , 2014, Physical review letters.

[25]  Aaron Chen,et al.  Simultaneous magnetic manipulation and fluorescent tracking of multiple individual hybrid nanostructures. , 2010, Nano letters.

[26]  Christopher V. Rao,et al.  High-resolution, long-term characterization of bacterial motility using optical tweezers , 2009, Nature Methods.

[27]  Metin Sitti,et al.  Mobile microrobots for bioengineering applications. , 2017, Lab on a chip.

[28]  Abraham P. Lee,et al.  Whole-blood sorting, enrichment and in situ immunolabeling of cellular subsets using acoustic microstreaming , 2018, Microsystems & Nanoengineering.

[29]  Li Zhang,et al.  Bio-inspired magnetic swimming microrobots for biomedical applications. , 2013, Nanoscale.

[30]  Xiaotang Hu,et al.  Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. , 2012, Lab on a chip.

[31]  Li Zhang,et al.  Dumbbell Fluidic Tweezers for Dynamical Trapping and Selective Transport of Microobjects , 2017 .

[32]  Rajan P Kulkarni,et al.  Size-selective collection of circulating tumor cells using Vortex technology. , 2014, Lab on a chip.

[33]  Wesley L. Nyborg,et al.  Acoustic Streaming due to Attenuated Plane Waves , 1953 .

[34]  Vijay Kumar,et al.  Automated biomanipulation of single cells using magnetic microrobots , 2013, Int. J. Robotics Res..

[35]  Daniel T Schwartz,et al.  Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping. , 2012, Analytical chemistry.

[36]  I-Kao Chiang,et al.  On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves , 2012, Proceedings of the National Academy of Sciences.

[37]  M. Tanyeri,et al.  Manipulation and confinement of single particles using fluid flow. , 2013, Nano letters.

[38]  Jongyoon Han,et al.  Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. , 2016, Lab on a chip.

[39]  Leidong Mao,et al.  Label‐Free Microfluidic Manipulation of Particles and Cells in Magnetic Liquids , 2016, Advanced functional materials.