Why parameter control mechanisms should be benchmarked against random variation

Parameter control mechanisms in evolutionary algorithms (EAs) dynamically change the values of the EA parameters during a run. Research over the last two decades has delivered ample examples where an EA using a parameter control mechanism outperforms its static version with fixed parameter values. However, very few have investigated why such parameter control approaches perform better. In principle, it could be the case that using different parameter values alone is already sufficient and EA performance can be improved without sophisticated control strategies raising an issue in the methodology of parameter control mechanisms' evaluation. This paper investigates whether very simple random variation in parameter values during an evolutionary run can already provide improvements over static values. Results suggest that random variation of parameters should be included in the benchmarks when evaluating a new parameter control mechanism.

[1]  A. E. Eiben,et al.  Multi-Problem Parameter Tuning using BONESA , 2011 .

[2]  Kwong-Sak Leung,et al.  A novel approach in parameter adaptation and diversity maintenance for genetic algorithms , 2003, Soft Comput..

[3]  Reinhard Männer,et al.  Towards an Optimal Mutation Probability for Genetic Algorithms , 1990, PPSN.

[4]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[5]  Christian Gagné,et al.  Improving genetic algorithms performance via deterministic population shrinkage , 2009, GECCO.

[6]  Alex S. Fukunaga,et al.  Distributed island-model genetic algorithms using heterogeneous parameter settings , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[7]  Thomas Jansen,et al.  An Analysis Of The Role Of Offspring Population Size In EAs , 2002, GECCO.

[8]  Martijn C. Schut,et al.  Reinforcement Learning for Online Control of Evolutionary Algorithms , 2006, ESOA.

[9]  Fearghal Morgan,et al.  Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection , 2011, IEEE Transactions on Evolutionary Computation.

[10]  William M. Spears,et al.  Adapting Crossover in Evolutionary Algorithms , 1995, Evolutionary Programming.

[11]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[12]  Zbigniew Michalewicz,et al.  Parameter Control in Practice , 2007, Parameter Setting in Evolutionary Algorithms.

[13]  Fernando G. Lobo Idealized dynamic population sizing for uniformly scaled problems , 2011, GECCO '11.

[14]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[15]  Kenneth DeJong,et al.  Parameter Setting in EAs: a 30 Year Perspective , 2007, Parameter Setting in Evolutionary Algorithms.

[16]  A. Rosa,et al.  An experimental study on dynamic random variation of population size , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[17]  Hans-Georg Beyer,et al.  Self-Adaptation in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[18]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[19]  Cláudio F. Lima,et al.  Adaptive Population Sizing Schemes in Genetic Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.