Solubilization of human erythrocyte membranes by non-ionic surfactants of the polyoxyethylene alkyl ethers series.
暂无分享,去创建一个
N C Meirelles | E de Paula | E. de Paula | N. C. Meirelles | P S C Preté | K Gomes | S V P Malheiros | P. S. Preté | S. V. Malheiros | K. Gomes
[1] P. Seeman. II. Erythrocyte membrane stabilization by local anesthetics and tranquilizers , 1966 .
[2] M. Kozlov,et al. Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. , 2000, Biochimica et biophysica acta.
[3] S. Schrier,et al. Transmembrane redistribution of phospholipids of the human red cell membrane during hypotonic hemolysis. , 1992, Biochimica et biophysica acta.
[4] A Csordas,et al. Biphasic interaction of Triton detergents with the erythrocyte membrane. , 1987, The Biochemical journal.
[5] F. Goñi,et al. The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine. A comparative study. , 1995, Biochemistry.
[6] B. Isomaa,et al. Vesiculation induced by amphiphiles in erythrocytes. , 1989, Biochimica et biophysica acta.
[7] M. Sheetz,et al. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. , 1974, Proceedings of the National Academy of Sciences of the United States of America.
[8] C. Jung,et al. Characterization and partial purification of liver glucose transporter GLUT2. , 2000, Biochimica et biophysica acta.
[9] A. Helenius,et al. Solubilization of membranes by detergents. , 1975, Biochimica et biophysica acta.
[10] T. Randolph,et al. Stability of Protein Formulations: Investigation of Surfactant Effects by a Novel EPR Spectroscopic Technique , 2004, Pharmaceutical Research.
[11] D. Hochstrasser,et al. Extraction of membrane proteins by differential solubilization for separation using two‐dimensional gel electrophoresis , 1998, Electrophoresis.
[12] A. Berthod,et al. Polyoxyethylene alkyl ether nonionic surfactants: physicochemical properties and use for cholesterol determination in food. , 2001, Talanta.
[13] H. Schägger,et al. Binding of detergents and inhibitors to bovine complex I - a novel purification procedure for bovine complex I retaining full inhibitor sensitivity. , 2000, Biochimica et biophysica acta.
[14] S. Chi,et al. Enhancing effect of polyoxyethylene alkyl ethers on the skin permeation of ibuprofen. , 2000, International journal of pharmaceutics.
[15] V. H. Lee,et al. The ocular route for systemic insulin delivery in the albino rabbit. , 1989, The Journal of pharmacology and experimental therapeutics.
[16] E. Galembeck,et al. Effects of polyoxyethylene chain length on erythrocyte hemolysis induced by poly[oxyethylene (n) nonylphenol] non-ionic surfactants. , 1998, Chemico-biological interactions.
[17] F. Goñi,et al. Surfactant-induced release of liposomal contents. A survey of methods and results. , 1988, Biochimica et biophysica acta.
[18] I. Cameron,et al. Effect of non-lytic concentrations of Brij series detergents on the metabolism-independent ion permeability properties of human erythrocytes. , 1995, Biophysical journal.
[19] W. C. Griffin. Classification of surface-active agents by "HLB" , 1946 .
[20] B. Isomaa,et al. Amphiphile-induced antihaemolysis is not causally related to shape changes and vesiculation. , 1991, Chemico-biological interactions.
[21] F. Goñi,et al. Membrane solubilization by the non-ionic detergent triton X-100. A comparative study including model and cell membranes. , 1989, Revista espanola de fisiologia.
[22] P. Seeman,et al. The membrane concentrations of neutral and positive anesthetics (alcohols, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not. , 1972, Biochimica et biophysica acta.
[23] A. Zachowski,et al. Influence of chlorpromazine on the transverse mobility of phospholipids in the human erythrocyte membrane: relation to shape changes. , 1988, Biochimica et biophysica acta.
[24] B. Isomaa,et al. Torocyte shapes of red blood cell daughter vesicles. , 2000, Bioelectrochemistry.
[25] W. Huestis,et al. Role of membrane lipid distribution in chlorpromazine-induced shape change of human erythrocytes. , 1997, Biochimica et biophysica acta.
[26] S. Tomellini,et al. Chiral separation of verapamil and related compounds using micellar electrokinetic capillary chromatography with mixed micelles of bile salt and polyoxyethylene ethers , 1996 .
[27] G. Klose. Biomembranes, Physical Aspects , 1996 .
[28] C. Haest,et al. Acceleration of phospholipid flip-flop in the erythrocyte membrane by detergents differing in polar head group and alkyl chain length. , 2000, Biochimica et biophysica acta.
[29] E. de Paula,et al. Quantitative assessment of human erythrocyte membrane solubilization by Triton X-100. , 2002, Biophysical chemistry.
[30] R. Segal,et al. Hemolysis caused by polyoxyethylene-derived surfactants. Evidence for peroxide participation. , 1981, Biochimica et biophysica acta.
[31] E. Dennis. Formation and characterization of mixed micelles of the nonionic surfactant Triton X-100 with egg, dipalmitoyl, and dimyristoyl phosphatidylcholines. , 1974, Archives of biochemistry and biophysics.
[32] B. Zaslavsky,et al. Action of surface-active substances of biological membranes. III. Comparison of hemolytic activity of ionic and nonionic surfactants. , 1978, Biochimica et biophysica acta.
[33] B. Zaslavsky,et al. Action of surface-active substances on biological membranes. II. Hemolytic activity of nonionic surfactants. , 1978, Biochimica et biophysica acta.
[34] D. Lichtenberg. Characterization of the solubilization of lipid bilayers by surfactants. , 1985, Biochimica et biophysica acta.
[35] F. Goñi,et al. Effective detergent/lipid ratios in the solubilization of phosphatidylcholine vesicles by Triton X‐100 , 1992, FEBS letters.
[36] E. de Paula,et al. Pathways involved in trifluoperazine-, dibucaine- and praziquantel-induced hemolysis. , 2000, Biophysical chemistry.
[37] J. Bielawski. Two types of haemolytic activity of detergents. , 1990, Biochimica et biophysica acta.
[38] I. Cameron,et al. Release of potassium, lipids, and proteins from nonionic detergent treated chicken red blood cells , 1994, Journal of cellular physiology.
[39] M. Bretscher. Membrane Structure: Some General Principles , 1973, Science.
[40] B. Deuticke. Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. , 1968, Biochimica et biophysica acta.
[41] M. Esmann,et al. Kinetic properties of C12E8-solubilized (Na+ + K+)-ATPase. , 1984, Biochimica et biophysica acta.
[42] G. Marinetti,et al. Differential solubilization of proteins, phospholipids, and cholesterol of erythrocyte membranes by detergents. , 1974, Biochimica et biophysica acta.
[43] E. de Paula,et al. Contribution of trifluoperazine/lipid ratio and drug ionization to hemolysis. , 1998, Biochimica et biophysica acta.
[44] P. Devaux,et al. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.
[45] A. Maza,et al. Permeability changes in the phospholipid bilayer caused by nonionic surfactants , 1992 .
[46] K. Edwards,et al. Kinetics of surfactant-induced leakage and growth of unilamellar vesicles , 1990 .
[47] B. Isomaa,et al. Shape transformations induced by amphiphiles in erythrocytes. , 1987, Biochimica et biophysica acta.
[48] B. de Kruijff,et al. Non-bilayer structures in membrane fusion. , 1984, Ciba Foundation symposium.
[49] H. Sagitani,et al. The effect of nonionic surfactant structure on hemolysis , 1993 .
[50] V. Torchilin,et al. Interaction of Triton X-100 and octyl glucoside with liposomal membranes at sublytic and lytic concentrations. Spectroscopic studies. , 1990, Biochimica et biophysica acta.
[51] M. N. Jones,et al. Surfactants in membrane solubilisation. , 1999, International journal of pharmaceutics.
[52] N. Azuma,et al. Purification of Membrane-bound Lactoferrin from the Human Milk Fat Globule Membrane , 2000, Bioscience, biotechnology, and biochemistry.
[53] P. Coutinho,et al. Effect of Surfactants in Soybean Lecithin Liposomes Studied by Energy Transfer Between NBD-PE and N-Rh-PE , 2000 .
[54] F. Goñi,et al. An assessment of the biochemical applications of the non-ionic surfactant Hecameg. , 1994, Biochimica et biophysica acta.
[55] S. Schreier,et al. Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. , 2000, Biochimica et biophysica acta.
[56] L. Mahan,et al. Some properties of alkali-extracted red cell ghost membranes. , 1981, Biochimica et biophysica acta.