Solubilization of human erythrocyte membranes by non-ionic surfactants of the polyoxyethylene alkyl ethers series.

In the present study, we investigated the interaction of the non-ionic surfactants polyoxyethylene alkyl ethers (C(n)E(m)) with erythrocyte membranes. For this purpose we have performed hemolytic assays under isosmotic conditions with five surfactants in the 8 polyoxyethylene ether series. By applying to the hemolytic curves a quantitative treatment developed for the study of surface-active compounds on biomembranes, we could calculate the surfactant/lipid molar ratios for the onset of hemolysis (R(e)(sat)) and for complete hemolysis (R(e)(sol)). This approach also allowed the calculation of the binding constants for each surfactant to the erythrocyte membrane. Results in the C(n)E(m) series were compared to those obtained for Triton X-100, a well-known non-ionic surfactant with values of cmc and HLB in the range of the alkyl ethers studied. Inside the series the lytic effect increased with the more hydrophobic homologues (C(10)E(8)<C(12)E(8)<C(14)E(8)<C(16)E(8)<C(18)E(8)), with Re values between 3:1 and 0.03:1. The effect of C(10)E(8) and C(12)E(8) was found to be in the range of that caused by Triton X-100, proving that C(n)E(m) surfactants are strongly hemolytic.

[1]  P. Seeman II. Erythrocyte membrane stabilization by local anesthetics and tranquilizers , 1966 .

[2]  M. Kozlov,et al.  Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. , 2000, Biochimica et biophysica acta.

[3]  S. Schrier,et al.  Transmembrane redistribution of phospholipids of the human red cell membrane during hypotonic hemolysis. , 1992, Biochimica et biophysica acta.

[4]  A Csordas,et al.  Biphasic interaction of Triton detergents with the erythrocyte membrane. , 1987, The Biochemical journal.

[5]  F. Goñi,et al.  The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine. A comparative study. , 1995, Biochemistry.

[6]  B. Isomaa,et al.  Vesiculation induced by amphiphiles in erythrocytes. , 1989, Biochimica et biophysica acta.

[7]  M. Sheetz,et al.  Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[8]  C. Jung,et al.  Characterization and partial purification of liver glucose transporter GLUT2. , 2000, Biochimica et biophysica acta.

[9]  A. Helenius,et al.  Solubilization of membranes by detergents. , 1975, Biochimica et biophysica acta.

[10]  T. Randolph,et al.  Stability of Protein Formulations: Investigation of Surfactant Effects by a Novel EPR Spectroscopic Technique , 2004, Pharmaceutical Research.

[11]  D. Hochstrasser,et al.  Extraction of membrane proteins by differential solubilization for separation using two‐dimensional gel electrophoresis , 1998, Electrophoresis.

[12]  A. Berthod,et al.  Polyoxyethylene alkyl ether nonionic surfactants: physicochemical properties and use for cholesterol determination in food. , 2001, Talanta.

[13]  H. Schägger,et al.  Binding of detergents and inhibitors to bovine complex I - a novel purification procedure for bovine complex I retaining full inhibitor sensitivity. , 2000, Biochimica et biophysica acta.

[14]  S. Chi,et al.  Enhancing effect of polyoxyethylene alkyl ethers on the skin permeation of ibuprofen. , 2000, International journal of pharmaceutics.

[15]  V. H. Lee,et al.  The ocular route for systemic insulin delivery in the albino rabbit. , 1989, The Journal of pharmacology and experimental therapeutics.

[16]  E. Galembeck,et al.  Effects of polyoxyethylene chain length on erythrocyte hemolysis induced by poly[oxyethylene (n) nonylphenol] non-ionic surfactants. , 1998, Chemico-biological interactions.

[17]  F. Goñi,et al.  Surfactant-induced release of liposomal contents. A survey of methods and results. , 1988, Biochimica et biophysica acta.

[18]  I. Cameron,et al.  Effect of non-lytic concentrations of Brij series detergents on the metabolism-independent ion permeability properties of human erythrocytes. , 1995, Biophysical journal.

[19]  W. C. Griffin Classification of surface-active agents by "HLB" , 1946 .

[20]  B. Isomaa,et al.  Amphiphile-induced antihaemolysis is not causally related to shape changes and vesiculation. , 1991, Chemico-biological interactions.

[21]  F. Goñi,et al.  Membrane solubilization by the non-ionic detergent triton X-100. A comparative study including model and cell membranes. , 1989, Revista espanola de fisiologia.

[22]  P. Seeman,et al.  The membrane concentrations of neutral and positive anesthetics (alcohols, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not. , 1972, Biochimica et biophysica acta.

[23]  A. Zachowski,et al.  Influence of chlorpromazine on the transverse mobility of phospholipids in the human erythrocyte membrane: relation to shape changes. , 1988, Biochimica et biophysica acta.

[24]  B. Isomaa,et al.  Torocyte shapes of red blood cell daughter vesicles. , 2000, Bioelectrochemistry.

[25]  W. Huestis,et al.  Role of membrane lipid distribution in chlorpromazine-induced shape change of human erythrocytes. , 1997, Biochimica et biophysica acta.

[26]  S. Tomellini,et al.  Chiral separation of verapamil and related compounds using micellar electrokinetic capillary chromatography with mixed micelles of bile salt and polyoxyethylene ethers , 1996 .

[27]  G. Klose Biomembranes, Physical Aspects , 1996 .

[28]  C. Haest,et al.  Acceleration of phospholipid flip-flop in the erythrocyte membrane by detergents differing in polar head group and alkyl chain length. , 2000, Biochimica et biophysica acta.

[29]  E. de Paula,et al.  Quantitative assessment of human erythrocyte membrane solubilization by Triton X-100. , 2002, Biophysical chemistry.

[30]  R. Segal,et al.  Hemolysis caused by polyoxyethylene-derived surfactants. Evidence for peroxide participation. , 1981, Biochimica et biophysica acta.

[31]  E. Dennis Formation and characterization of mixed micelles of the nonionic surfactant Triton X-100 with egg, dipalmitoyl, and dimyristoyl phosphatidylcholines. , 1974, Archives of biochemistry and biophysics.

[32]  B. Zaslavsky,et al.  Action of surface-active substances of biological membranes. III. Comparison of hemolytic activity of ionic and nonionic surfactants. , 1978, Biochimica et biophysica acta.

[33]  B. Zaslavsky,et al.  Action of surface-active substances on biological membranes. II. Hemolytic activity of nonionic surfactants. , 1978, Biochimica et biophysica acta.

[34]  D. Lichtenberg Characterization of the solubilization of lipid bilayers by surfactants. , 1985, Biochimica et biophysica acta.

[35]  F. Goñi,et al.  Effective detergent/lipid ratios in the solubilization of phosphatidylcholine vesicles by Triton X‐100 , 1992, FEBS letters.

[36]  E. de Paula,et al.  Pathways involved in trifluoperazine-, dibucaine- and praziquantel-induced hemolysis. , 2000, Biophysical chemistry.

[37]  J. Bielawski Two types of haemolytic activity of detergents. , 1990, Biochimica et biophysica acta.

[38]  I. Cameron,et al.  Release of potassium, lipids, and proteins from nonionic detergent treated chicken red blood cells , 1994, Journal of cellular physiology.

[39]  M. Bretscher Membrane Structure: Some General Principles , 1973, Science.

[40]  B. Deuticke Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. , 1968, Biochimica et biophysica acta.

[41]  M. Esmann,et al.  Kinetic properties of C12E8-solubilized (Na+ + K+)-ATPase. , 1984, Biochimica et biophysica acta.

[42]  G. Marinetti,et al.  Differential solubilization of proteins, phospholipids, and cholesterol of erythrocyte membranes by detergents. , 1974, Biochimica et biophysica acta.

[43]  E. de Paula,et al.  Contribution of trifluoperazine/lipid ratio and drug ionization to hemolysis. , 1998, Biochimica et biophysica acta.

[44]  P. Devaux,et al.  ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Maza,et al.  Permeability changes in the phospholipid bilayer caused by nonionic surfactants , 1992 .

[46]  K. Edwards,et al.  Kinetics of surfactant-induced leakage and growth of unilamellar vesicles , 1990 .

[47]  B. Isomaa,et al.  Shape transformations induced by amphiphiles in erythrocytes. , 1987, Biochimica et biophysica acta.

[48]  B. de Kruijff,et al.  Non-bilayer structures in membrane fusion. , 1984, Ciba Foundation symposium.

[49]  H. Sagitani,et al.  The effect of nonionic surfactant structure on hemolysis , 1993 .

[50]  V. Torchilin,et al.  Interaction of Triton X-100 and octyl glucoside with liposomal membranes at sublytic and lytic concentrations. Spectroscopic studies. , 1990, Biochimica et biophysica acta.

[51]  M. N. Jones,et al.  Surfactants in membrane solubilisation. , 1999, International journal of pharmaceutics.

[52]  N. Azuma,et al.  Purification of Membrane-bound Lactoferrin from the Human Milk Fat Globule Membrane , 2000, Bioscience, biotechnology, and biochemistry.

[53]  P. Coutinho,et al.  Effect of Surfactants in Soybean Lecithin Liposomes Studied by Energy Transfer Between NBD-PE and N-Rh-PE , 2000 .

[54]  F. Goñi,et al.  An assessment of the biochemical applications of the non-ionic surfactant Hecameg. , 1994, Biochimica et biophysica acta.

[55]  S. Schreier,et al.  Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. , 2000, Biochimica et biophysica acta.

[56]  L. Mahan,et al.  Some properties of alkali-extracted red cell ghost membranes. , 1981, Biochimica et biophysica acta.