Determination of Normalized Magnetic Eigenfields in Microwave Cavities

The magnetic field integral equation for axially symmetric cavities with perfectly conducting surfaces is discretized according to a high-order convergent Fourier-Nyström scheme. The resulting solver is used to determine eigenwavenumbers and normalized magnetic eigenfields to very high accuracy in the entire computational domain.

[1]  W. Bruns,et al.  GdfidL: a finite difference program with reduced memory and CPU usage , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).

[2]  L. J. Chu,et al.  Diffraction Theory of Electromagnetic Waves , 1939 .

[3]  Amparo Gil,et al.  Evaluation of toroidal harmonics , 2000 .

[4]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[5]  Alex H. Barnett,et al.  Evaluation of Layer Potentials Close to the Boundary for Laplace and Helmholtz Problems on Analytic Planar Domains , 2013, SIAM J. Sci. Comput..

[6]  Thomas P. Wangler,et al.  RF linear accelerators , 2008 .

[7]  Alex H. Barnett,et al.  Quasi-orthogonality on the boundary for Euclidean Laplace eigenfunctions , 2006, math-ph/0601006.

[8]  Geyi Wen,et al.  TIME-DOMAIN THEORY OF METAL CAVITY RESONATOR , 2008 .

[9]  W. C. Chew,et al.  Evaluation of singular Fourier coefficients in solving electromagnetic scattering by body of revolution , 2008 .

[10]  H. Cohl,et al.  A Compact Cylindrical Green’s Function Expansion for the Solution of Potential Problems , 1999 .

[11]  Shu-Wei Chang,et al.  Whispering gallery mode lasing from zinc oxide hexagonal nanodisks. , 2010, ACS nano.

[12]  Raj Mittra,et al.  The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution , 1988, 1988 IEEE AP-S. International Symposium, Antennas and Propagation.

[13]  Walter Bartky,et al.  Numerical Calculation of a Generalized Complete Elliptic Integral , 1938 .

[14]  A. Chincarini,et al.  A detector of high frequency gravitational waves based on coupled microwave cavities , 2003 .

[15]  P. Yla-Oijala Comparison of Boundary Integral Formulations for Field Computation in Axisymmetric Resonators , 2000 .

[16]  M. Andreasen Scattering from bodies of revolution , 1965 .

[17]  K. Halbach,et al.  Superfish-a Computer Program for Evaluation of RF Cavities with Cylindrical Symmetry , 1976 .

[18]  Johan Helsing,et al.  On the polarizability and capacitance of the cube , 2012, 1203.5997.

[19]  Jin Au Kong,et al.  Theory of electromagnetic waves , 1975 .

[20]  A. K. Abdelmageed Efficient Evaluation of Modal Green's Functions Arising in Em Scattering By Bodies of ΡΕVolution - Abstract , 2000 .

[21]  Charles L. Epstein,et al.  Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II , 2008, 0808.3369.

[22]  Anders Holst,et al.  Variants of an explicit kernel-split panel-based Nyström discretization scheme for Helmholtz boundary value problems , 2013, Adv. Comput. Math..

[23]  R. Harrington,et al.  Radiation and scattering from bodies of revolution , 1969 .

[24]  Allen W. Glisson,et al.  Simple and Efficient Numerical Techniques for Treating Bodies of Revolution , 1979 .

[25]  Anders Karlsson,et al.  An Accurate Boundary Value Problem Solver Applied to Scattering From Cylinders With Corners , 2012, IEEE Transactions on Antennas and Propagation.

[26]  Mats Gustafsson,et al.  Accurate and Efficient Evaluation of Modal Green's Functions , 2010 .

[27]  Anders Karlsson,et al.  An explicit kernel-split panel-based Nyström scheme for integral equations on axially symmetric surfaces , 2013, J. Comput. Phys..

[28]  Aihua W. Wood,et al.  Locally corrected Nyström method for EM scattering by bodies of revolution , 2004 .

[29]  T. Weiland A discretization model for the solution of Maxwell's equations for six-component fields , 1977 .

[30]  Andrew Hassell,et al.  Fast Computation of High‐Frequency Dirichlet Eigenmodes via Spectral Flow of the Interior Neumann‐to‐Dirichlet Map , 2011, 1112.5665.

[31]  M. Ferrando-Bataller,et al.  Overcoming Low-Frequency Breakdown of the Magnetic Field Integral Equation , 2013, IEEE Transactions on Antennas and Propagation.

[32]  Alex H. Barnett Asymptotic rate of quantum ergodicity in chaotic euclidean billiards , 2005 .

[33]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[34]  A. Kucharski A method of moments solution for electromagnetic scattering by inhomogeneous dielectric bodies of revolution , 2000 .

[35]  Per-Gunnar Martinsson,et al.  A high-order Nyström discretization scheme for boundary integral equations defined on rotationally symmetric surfaces , 2011, J. Comput. Phys..

[36]  J. Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[37]  Shuji Nakamura,et al.  Room-temperature continuous-wave lasing in GaN/InGaN microdisks , 2007 .