Fatigue and martensitic transitions in Cu–Zn–Al and Cu–Al–Ni single crystals: mechanical behaviour, defects and diffusive phenomena
暂无分享,去创建一个
F. Lovey | J. Malarría | M. Sade | A. Yawny | R. Gastien | C. Damiani
[1] F. Lovey,et al. A σ–T diagram analysis regarding the γ′ inhibition in β ↔ β′ + γ′ cycling in CuAlNi single crystals , 2006 .
[2] M. Sade,et al. Thermal and pseudoelastic cycling in Cu–14.1Al–4.2Ni (wt%) single crystals , 2005 .
[3] F. Lovey,et al. Pseudoelastic fatigue and diffusive phenomena in Cu-Zn-A1 single crystals , 2003 .
[4] F. Lovey,et al. Pseudoelastic cycling in Cu-14.3Al-4.1Ni (wt.%) single crystals , 2003 .
[5] F. Lovey,et al. Plastic deformation under compression of Cu–Zn–Al martensitic single crystals , 2002 .
[6] F. Lovey,et al. Microstructural evolution in the pseudoelastic cycling of Cu–Zn–Al single crystals: behavior at a transition stage , 2001 .
[7] D. Vasiljević-Radović,et al. Lattice Parameters of Metastable Structures in Quenched Fe-Mn Alloys. Part II: hcp Phase , 2001 .
[8] M. Ahlers. CRYSTALLOGRAPHY OF MARTENSITE , 2001 .
[9] A. F. Guillermet,et al. Effects of thermal cycling on the fcc–hcp martensitic transformation temperatures in the Fe–Mn system II. Transmission electron microscopy study of the microstructural changes , 2000 .
[10] F. Lovey,et al. Pseudoelastic fatigue of CuZnAl single crystals: the effect of concomitant diffusional processes , 2000 .
[11] A. Eberhardt,et al. Fatigue behavior of Cu-Al-Be shape memory single crystals , 2000 .
[12] Vicenc Torra,et al. Guaranteed behavior on SMA: mesoscopic and microscopic analysis of Cu-based alloys , 2000, Smart Structures.
[13] A. F. Guillermet,et al. Effects of thermal cycling and plastic deformation upon the Gibbs energy barriers to martensitic transformation in Fe-Mn and Fe-Mn-Co alloys , 1999 .
[14] M. Sade,et al. Composition dependence of surface and bulk defects generated in CuZnAl single crystals after pseudoelastic cycling , 1999 .
[15] Xiaobing Ren,et al. Martensitic transformations in nonferrous shape memory alloys , 1999 .
[16] R. B. Pérez-Sáez,et al. Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys , 1999 .
[17] V. Novák,et al. On the anisotropy of martensitic transformations in Cu-based alloys , 1999 .
[18] X. Ren,et al. Recent advances in understanding the origin of martensite aging phenomena in shape memory alloys , 1999 .
[19] J. Humbeeck,et al. Stabilization and two-way shape memory effect in Cu-Al-Ni single crystals , 1999 .
[20] M. Ahlers,et al. Ferroelasticity or rubber like behaviour in stabilized Cu–Zn–Al single crystals , 1998 .
[21] F. Lovey,et al. Recoverable Effects Related to Pseudoelastic Cycling in Cu-Zn-Al Single Crystals , 1997 .
[22] Petr Šittner,et al. Anisotropy of transformation characteristics of Cu-base shape memory alloys , 1997 .
[23] R. Romero,et al. The plastic deformation of 18R long range ordered Cu-Zn-Al single crystals the temperature and strain rate dependence of the critical stress and the influence of dynamic strain aging , 1997 .
[24] F. Lovey,et al. Early Stages of Pseudoelastic Fatigue in Cu-Zn-Al Single Crystals Cycled in the Cryogenic Range , 1996 .
[25] F. Lovey,et al. Quantitative analysis of dislocations in relation with the martensitic transformation in Cu‐Zn‐Al alloys , 1996 .
[26] V. Novák,et al. Martensitic Transformation in [110] Single Crystals of Cu-Al-Ni Alloy , 1995 .
[27] M. Chandrasekaran,et al. Stabilisation of martensite in copper based shape memory alloys , 1995 .
[28] V. Novák,et al. Martensitic transformations in single crystals of CuAlNi induced by tensile stress , 1995 .
[29] V. Novák,et al. Orientation Dependence of σ-T Phase Diagrams for Martensite Transformations in Cu-Al-Ni Single Crystals , 1995 .
[30] A. Tolley. The effect of electron irradiation on the β ⇔ 18R martensitic transformation in Cu-Zn-Al alloys , 1994 .
[31] J. Malarría,et al. The effect of temperature on pseudoelastic cycling of CuZnAl single crystals , 1994 .
[32] M. Ahlers,et al. Irradiation effects on the β a3 18R martensitic transformation in Cu-Zn-Al alloys , 1993 .
[33] M. Chandrasekaran,et al. On the inhibition of stabilisation of martensite in Cu-Zn-Al alloys , 1993 .
[34] M. Ahlers,et al. The martensitic phases and their stability in CuZn and CuZnAl alloys—II. The transformation between the close packed martensitic phases , 1992 .
[35] F. Lovey,et al. Plastic deformation in Cu-Zn-Al 18R martensite. Electron microscopy analysis of dislocations , 1992 .
[36] R. Romero,et al. The plastic deformation of long range ordered 18R martensitic single crystals of Cu-Zn-Al alloys , 1992 .
[37] R. Romero,et al. The influence of β-phase plastic deformation on the martensitic transformation in Cu-Zn-Al single crystals , 1989 .
[38] F. Lovey,et al. 18R to 2H transformations in CuZnAl alloys , 1989 .
[39] W. Stobbs,et al. The inhibition of stabilization in CuZnAl martensite memory alloys , 1989 .
[40] F. Lovey,et al. Plasticity in β phase Cu-Zn-Al alloys , 1988 .
[41] M. Ahlers,et al. The stabilization of martensite in CuZnAl alloys , 1988 .
[42] K. Marukawa. On the model for the formation of dislocations associated with the martensitic transformation in copper base alloys , 1987 .
[43] F. Lovey,et al. An electron-microscopy study of dislocation structures in fatigued Cu-Zn-Al shape-memory alloys , 1987 .
[44] K. Shimizu,et al. Crystallography of β1 → γ′1 stress-induced martensitic transformation in a CuAlNi alloy , 1986 .
[45] M. Sade,et al. Low temperature fatigue in CuZnAl single crystals , 1985 .
[46] M. Sade,et al. Fatigue in CuZnAl single crystals , 1985 .
[47] F. Lovey,et al. The structure of the modified 2H martensite in CuZnAl , 1983 .
[48] K. Shimizu,et al. Twinning pseudoelasticity caused by cyclic stress in a single crystal CuAlNi alloy , 1981 .
[49] K. Shimizu,et al. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys , 1979 .
[50] L. C. Brown. The fatigue of pseudoelastic single crystals of α-CuAINi , 1979 .
[51] M. Ahlers,et al. A model for the rubber-like behaviour in CuZnAl martensites , 1978 .
[52] M. Ahlers,et al. The rubber effect in CuZnAl martensite , 1978 .
[53] J. Polák. The effect of intermediate annealing on the electrical resistivity and shear stress of fatigued copper , 1970 .
[54] K. Shimizu,et al. Morphology and Crystallography of Thermoelastic γ' Cu-Al-Ni Martensite , 1969 .
[55] M. Chandrasekaran,et al. Thermoelastic martensitic transformation in β Cu-Zn-Al studied by density changes , 1988 .
[56] G. Guénin,et al. On the characterization and origin of the dislocations associated with the two way memory effect in CuZnAl thermoelastic alloys—II. The model for the formation of dislocations , 1987 .
[57] M. Ahlers. Martensite and equilibrium phases in CuZn and CuZnAl alloys , 1986 .
[58] J. Humbeeck,et al. Positron annihilation study of defects in the cyclically transformed martensite phase in a Cu-Zn-Al Alloy , 1985 .
[59] K. Shimizu,et al. A detailed observation on successive stress-induced martensitic transformations in Cu−Al−Ni alloy single crystals above Af , 1985 .
[60] H. Sakamoto. Fatigue Behavior of Monocrystalline Cu–Al–Ni Shape Memory Alloys under Various Deformation Modes , 1983 .
[61] K. Shimizu,et al. Fatigue Properties Associated with Cyclic β 1 \ ightleftarrowsβ 1 ′ Transformation Pseudoelasticity of Cu–Al–Ni Alloy Single Crystals , 1981 .