Fatigue and martensitic transitions in Cu–Zn–Al and Cu–Al–Ni single crystals: mechanical behaviour, defects and diffusive phenomena

The effects of the repeated stress-induced transformation (pseudoelastic fatigue) on the mechanical behaviour and microstructure of Cu–Zn–Al and Cu–Al–Ni single crystals are presented. Several microstructural changes occur during cycling at temperatures above the martensitic transformation temperature Ms in Cu–Zn–Al alloys. Bulk defects consisting of dislocation bands with retained martensite and intrusion–extrusion types of surface defects are observed. The fine characteristics of the defects, such as nucleation, density, as well as other microstructural features, depend on the working temperature, alloy composition, applied stresses and number of cycles. The presence of these defects alters the shape of the stress–strain curves in the pseudoelastic range for Cu–Zn–Al. Also diffusive phenomena strongly affect the mechanical behaviour of these alloys both in the parent and martensite phases, even for tests carried out slightly above room temperature. In turn, the kinetics of these diffusional processes has been found to depend on the density of bulk defects. Details of these processes are discussed and a simple model that describes the main characteristics of the mechanical behaviour evolution is considered. The interaction between the mechanical behaviour, density of defects and diffusion is discussed. In the case of Cu–Al–Ni, bulk defects are also shown to occur but the system is less prone to diffusion effects that could affect the mechanical behaviour. The defects generated during pseudoelastic cycling lead, however, to the inhibition of the γ′ phase when a transition between the bcc parent phase and a mixture of two martensitic structures γ′ (2H) and β′ (18R) is involved at the beginning of the cycling process.

[1]  F. Lovey,et al.  A σ–T diagram analysis regarding the γ′ inhibition in β ↔ β′ + γ′ cycling in CuAlNi single crystals , 2006 .

[2]  M. Sade,et al.  Thermal and pseudoelastic cycling in Cu–14.1Al–4.2Ni (wt%) single crystals , 2005 .

[3]  F. Lovey,et al.  Pseudoelastic fatigue and diffusive phenomena in Cu-Zn-A1 single crystals , 2003 .

[4]  F. Lovey,et al.  Pseudoelastic cycling in Cu-14.3Al-4.1Ni (wt.%) single crystals , 2003 .

[5]  F. Lovey,et al.  Plastic deformation under compression of Cu–Zn–Al martensitic single crystals , 2002 .

[6]  F. Lovey,et al.  Microstructural evolution in the pseudoelastic cycling of Cu–Zn–Al single crystals: behavior at a transition stage , 2001 .

[7]  D. Vasiljević-Radović,et al.  Lattice Parameters of Metastable Structures in Quenched Fe-Mn Alloys. Part II: hcp Phase , 2001 .

[8]  M. Ahlers CRYSTALLOGRAPHY OF MARTENSITE , 2001 .

[9]  A. F. Guillermet,et al.  Effects of thermal cycling on the fcc–hcp martensitic transformation temperatures in the Fe–Mn system II. Transmission electron microscopy study of the microstructural changes , 2000 .

[10]  F. Lovey,et al.  Pseudoelastic fatigue of CuZnAl single crystals: the effect of concomitant diffusional processes , 2000 .

[11]  A. Eberhardt,et al.  Fatigue behavior of Cu-Al-Be shape memory single crystals , 2000 .

[12]  Vicenc Torra,et al.  Guaranteed behavior on SMA: mesoscopic and microscopic analysis of Cu-based alloys , 2000, Smart Structures.

[13]  A. F. Guillermet,et al.  Effects of thermal cycling and plastic deformation upon the Gibbs energy barriers to martensitic transformation in Fe-Mn and Fe-Mn-Co alloys , 1999 .

[14]  M. Sade,et al.  Composition dependence of surface and bulk defects generated in CuZnAl single crystals after pseudoelastic cycling , 1999 .

[15]  Xiaobing Ren,et al.  Martensitic transformations in nonferrous shape memory alloys , 1999 .

[16]  R. B. Pérez-Sáez,et al.  Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys , 1999 .

[17]  V. Novák,et al.  On the anisotropy of martensitic transformations in Cu-based alloys , 1999 .

[18]  X. Ren,et al.  Recent advances in understanding the origin of martensite aging phenomena in shape memory alloys , 1999 .

[19]  J. Humbeeck,et al.  Stabilization and two-way shape memory effect in Cu-Al-Ni single crystals , 1999 .

[20]  M. Ahlers,et al.  Ferroelasticity or rubber like behaviour in stabilized Cu–Zn–Al single crystals , 1998 .

[21]  F. Lovey,et al.  Recoverable Effects Related to Pseudoelastic Cycling in Cu-Zn-Al Single Crystals , 1997 .

[22]  Petr Šittner,et al.  Anisotropy of transformation characteristics of Cu-base shape memory alloys , 1997 .

[23]  R. Romero,et al.  The plastic deformation of 18R long range ordered Cu-Zn-Al single crystals the temperature and strain rate dependence of the critical stress and the influence of dynamic strain aging , 1997 .

[24]  F. Lovey,et al.  Early Stages of Pseudoelastic Fatigue in Cu-Zn-Al Single Crystals Cycled in the Cryogenic Range , 1996 .

[25]  F. Lovey,et al.  Quantitative analysis of dislocations in relation with the martensitic transformation in Cu‐Zn‐Al alloys , 1996 .

[26]  V. Novák,et al.  Martensitic Transformation in [110] Single Crystals of Cu-Al-Ni Alloy , 1995 .

[27]  M. Chandrasekaran,et al.  Stabilisation of martensite in copper based shape memory alloys , 1995 .

[28]  V. Novák,et al.  Martensitic transformations in single crystals of CuAlNi induced by tensile stress , 1995 .

[29]  V. Novák,et al.  Orientation Dependence of σ-T Phase Diagrams for Martensite Transformations in Cu-Al-Ni Single Crystals , 1995 .

[30]  A. Tolley The effect of electron irradiation on the β ⇔ 18R martensitic transformation in Cu-Zn-Al alloys , 1994 .

[31]  J. Malarría,et al.  The effect of temperature on pseudoelastic cycling of CuZnAl single crystals , 1994 .

[32]  M. Ahlers,et al.  Irradiation effects on the β a3 18R martensitic transformation in Cu-Zn-Al alloys , 1993 .

[33]  M. Chandrasekaran,et al.  On the inhibition of stabilisation of martensite in Cu-Zn-Al alloys , 1993 .

[34]  M. Ahlers,et al.  The martensitic phases and their stability in CuZn and CuZnAl alloys—II. The transformation between the close packed martensitic phases , 1992 .

[35]  F. Lovey,et al.  Plastic deformation in Cu-Zn-Al 18R martensite. Electron microscopy analysis of dislocations , 1992 .

[36]  R. Romero,et al.  The plastic deformation of long range ordered 18R martensitic single crystals of Cu-Zn-Al alloys , 1992 .

[37]  R. Romero,et al.  The influence of β-phase plastic deformation on the martensitic transformation in Cu-Zn-Al single crystals , 1989 .

[38]  F. Lovey,et al.  18R to 2H transformations in CuZnAl alloys , 1989 .

[39]  W. Stobbs,et al.  The inhibition of stabilization in CuZnAl martensite memory alloys , 1989 .

[40]  F. Lovey,et al.  Plasticity in β phase Cu-Zn-Al alloys , 1988 .

[41]  M. Ahlers,et al.  The stabilization of martensite in CuZnAl alloys , 1988 .

[42]  K. Marukawa On the model for the formation of dislocations associated with the martensitic transformation in copper base alloys , 1987 .

[43]  F. Lovey,et al.  An electron-microscopy study of dislocation structures in fatigued Cu-Zn-Al shape-memory alloys , 1987 .

[44]  K. Shimizu,et al.  Crystallography of β1 → γ′1 stress-induced martensitic transformation in a CuAlNi alloy , 1986 .

[45]  M. Sade,et al.  Low temperature fatigue in CuZnAl single crystals , 1985 .

[46]  M. Sade,et al.  Fatigue in CuZnAl single crystals , 1985 .

[47]  F. Lovey,et al.  The structure of the modified 2H martensite in CuZnAl , 1983 .

[48]  K. Shimizu,et al.  Twinning pseudoelasticity caused by cyclic stress in a single crystal CuAlNi alloy , 1981 .

[49]  K. Shimizu,et al.  Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys , 1979 .

[50]  L. C. Brown The fatigue of pseudoelastic single crystals of α-CuAINi , 1979 .

[51]  M. Ahlers,et al.  A model for the rubber-like behaviour in CuZnAl martensites , 1978 .

[52]  M. Ahlers,et al.  The rubber effect in CuZnAl martensite , 1978 .

[53]  J. Polák The effect of intermediate annealing on the electrical resistivity and shear stress of fatigued copper , 1970 .

[54]  K. Shimizu,et al.  Morphology and Crystallography of Thermoelastic γ' Cu-Al-Ni Martensite , 1969 .

[55]  M. Chandrasekaran,et al.  Thermoelastic martensitic transformation in β Cu-Zn-Al studied by density changes , 1988 .

[56]  G. Guénin,et al.  On the characterization and origin of the dislocations associated with the two way memory effect in CuZnAl thermoelastic alloys—II. The model for the formation of dislocations , 1987 .

[57]  M. Ahlers Martensite and equilibrium phases in CuZn and CuZnAl alloys , 1986 .

[58]  J. Humbeeck,et al.  Positron annihilation study of defects in the cyclically transformed martensite phase in a Cu-Zn-Al Alloy , 1985 .

[59]  K. Shimizu,et al.  A detailed observation on successive stress-induced martensitic transformations in Cu−Al−Ni alloy single crystals above Af , 1985 .

[60]  H. Sakamoto Fatigue Behavior of Monocrystalline Cu–Al–Ni Shape Memory Alloys under Various Deformation Modes , 1983 .

[61]  K. Shimizu,et al.  Fatigue Properties Associated with Cyclic β 1 \ ightleftarrowsβ 1 ′ Transformation Pseudoelasticity of Cu–Al–Ni Alloy Single Crystals , 1981 .