Remarkably Suppressed Luminescence Inhomogeneity in a (0001) InGaN Green Laser Structure

The optical properties of InGaN-based green laser structures fabricated on (0001) GaN substrates are investigated using photoluminescence (PL) spectroscopy. Both macroscopic and microscopic measurements demonstrate that the potential fluctuations are drastically suppressed in state-of-the-art (0001) green InGaN laser structures. Time-resolved PL suggests that InGaN quantum wells (QWs) become thinner than conventional QWs, which is compensated for by higher In compositions. Such QWs increase the radiative recombination probability due to a greater overlap between the electron and hole wavefunctions. The suppressed luminescence inhomogeneity and increased radiative recombination probability may be responsible for the recent remarkable reduction in the lasing threshold.

[1]  Robert W. Martin,et al.  Origin of Luminescence from InGaN Diodes , 1999 .

[2]  Internal Quantum Efficiency and Nonradiative Recombination Rate in InGaN-Based Near-Ultraviolet Light-Emitting Diodes , 2012 .

[3]  Shun Lien Chuang,et al.  CRYSTAL-ORIENTATION EFFECTS ON THE PIEZOELECTRIC FIELD AND ELECTRONIC PROPERTIES OF STRAINED WURTZITE SEMICONDUCTORS , 1999 .

[4]  T. Mukai,et al.  Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates , 2006 .

[5]  Seoung-Hwan Park,et al.  Depolarization effects in (112¯2)-oriented InGaN∕GaN quantum well structures , 2007 .

[6]  Yoichi Kawakami,et al.  Nanoscopic recombination processes in InGaN/GaN quantum wells emitting violet, blue, and green spectra , 2008 .

[7]  Petr G. Eliseev,et al.  BLUE TEMPERATURE-INDUCED SHIFT AND BAND-TAIL EMISSION IN INGAN-BASED LIGHT SOURCES , 1997 .

[8]  Yoichi Kawakami,et al.  Nanoscopic Photoluminescence Properties of a Green-Emitting InGaN Single Quantum Well on a {2021} GaN Substrate Probed by Scanning Near-Field Optical Microscopy , 2012 .

[9]  K. Katayama,et al.  531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {202̄1} Free-Standing GaN Substrates , 2009 .

[10]  T. Mukai,et al.  Gain suppression phenomena observed in InxGa1-xN quantum well laser diodes emitting at 470 nm , 2006 .

[11]  R. Martin,et al.  Exciton localization and the Stokes’ shift in InGaN epilayers , 1999 .

[12]  Takashi Miyoshi,et al.  510–515 nm InGaN-Based Green Laser Diodes on c-Plane GaN Substrate , 2009 .

[13]  Takashi Mukai,et al.  Epitaxial growth and optical properties of semipolar (112¯2) GaN and InGaN∕GaN quantum wells on GaN bulk substrates , 2006 .

[14]  Stephan Lutgen,et al.  Recent results of blue and green InGaN laser diodes for laser projection , 2011, OPTO.

[15]  Koji Katayama,et al.  Continuous-Wave Operation of 520 nm Green InGaN-Based Laser Diodes on Semi-Polar {2021} GaN Substrates , 2009 .

[16]  C. Gourdon,et al.  Exciton Transfer between Localized States in CdS1–xSex Alloys , 1989 .

[17]  S. Lutgen,et al.  True Green Laser Diodes at 524 nm with 50 mW Continuous Wave Output Power on c-Plane GaN , 2010 .

[18]  Takashi Mukai,et al.  Polarization switching phenomena in semipolar InxGa1-xN/GaN quantum well active layers , 2008 .

[19]  M. Ueno,et al.  Weak Carrier/Exciton Localization in InGaN Quantum Wells for Green Laser Diodes Fabricated on Semi-Polar {2021} GaN Substrates , 2010 .

[20]  T. Mukai,et al.  Optical gain spectra for near UV to aquamarine (Al,In)GaN laser diodes. , 2007, Optics express.

[21]  Isamu Akasaki,et al.  Theoretical Study of Orientation Dependence of Piezoelectric Effects in Wurtzite Strained GaInN/GaN Heterostructures and Quantum Wells , 2000 .