Complementary quantum correlations among multipartite systems

We study the monogamy and polygamy relations related to quantum correlations for multipartite quantum systems. General monogamy relations are presented for the $$\alpha $$ α th $$(0\le \alpha \le \gamma , \gamma \ge 2)$$ ( 0 ≤ α ≤ γ , γ ≥ 2 ) power of quantum correlation, and general polygamy relations are given for the $$\beta $$ β th $$(\beta \ge \delta , 0\le \delta \le 1)$$ ( β ≥ δ , 0 ≤ δ ≤ 1 ) power of quantum correlation. These monogamy and polygamy inequalities are complementary to the existing ones with different parameter regions of $$\alpha $$ α and $$\beta $$ β . Applying these results to specific quantum correlations, the corresponding new classes of monogamy and polygamy relations are obtained, which include the existing ones as special cases. Detailed examples are given.

[1]  Frank Verstraete,et al.  Local vs. joint measurements for the entanglement of assistance , 2003, Quantum Inf. Comput..

[2]  Spreading of entanglement and steering along small Bose-Hubbard chains , 2015, 1507.08451.

[3]  A. Uhlmann Fidelity and Concurrence of conjugated states , 1999, quant-ph/9909060.

[4]  Gilad Gour,et al.  Monogamy of entanglement without inequalities , 2017, Quantum.

[5]  G. Giorgi Monogamy properties of quantum and classical correlations , 2011, 1109.1696.

[6]  Jeong San Kim Negativity and tight constraints of multiqubit entanglement , 2018 .

[7]  M. Koashi,et al.  Monogamy of quantum entanglement and other correlations (6 pages) , 2004 .

[8]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[9]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[10]  Tarrach,et al.  Generalized schmidt decomposition and classification of three-quantum-Bit states , 2000, Physical Review Letters.

[11]  Effect of a large number of parties on the monogamy of quantum correlations , 2013, 1312.6640.

[12]  Shao-Ming Fei,et al.  Finer distribution of quantum correlations among multiqubit systems , 2018, Quantum Information Processing.

[13]  Jun Li,et al.  Tighter monogamy relations in multiqubit systems , 2018, 1803.11355.

[14]  Rhonda Szczesniak,et al.  Quantum steering and entanglement in three-mode triangle Bose–Hubbard system , 2017, Quantum Inf. Process..

[15]  Xue-Na Zhu,et al.  General monogamy relations of quantum entanglement for multiqubit W-class states , 2017, Quantum Information Processing.

[16]  Xue-Na Zhu,et al.  Monogamy properties of qubit systems , 2018, Quantum Inf. Process..

[17]  Xue-Na Zhu,et al.  Entanglement Monogamy Relations of Qubit Systems , 2014, 1409.1022.

[18]  Jeong San Kim,et al.  Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity , 2008, 0811.2047.

[19]  Wieslaw Leonski,et al.  Quantum steering borders in three-qubit systems , 2017, Quantum Inf. Process..

[20]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[21]  Jeong San Kim,et al.  Unified entropy, entanglement measures and monogamy of multi-party entanglement , 2011, 1104.1675.

[22]  Marcin Pawlowski,et al.  Security proof for cryptographic protocols based only on the monogamy of Bell's inequality violations , 2009, 0907.3778.

[23]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[24]  Ming-Yong Ye,et al.  Entanglement monogamy and entanglement evolution in multipartite systems , 2009, 0906.0430.

[25]  F. Illuminati,et al.  Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence , 2005, quant-ph/0512124.

[26]  Barry C. Sanders,et al.  Duality for monogamy of entanglement , 2006, quant-ph/0606168.

[27]  S. Fei,et al.  A note on invariants and entanglements , 2001, quant-ph/0109073.

[28]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[29]  U. Sen,et al.  Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous , 2014 .

[30]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[31]  Yongming Li,et al.  General Monogamy of Tsallis-q Entropy Entanglement in Multiqubit Systems , 2016, 1604.07616.

[32]  Shao-Ming Fei,et al.  Tighter entanglement monogamy relations of qubit systems , 2017, Quantum Information Processing.

[33]  Gerardo Adesso,et al.  Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States. , 2017, Physical review letters.

[34]  Shao-Ming Fei,et al.  Tighter monogamy relations of quantum entanglement for multiqubit W-class states , 2017, Quantum Inf. Process..

[35]  Barry C. Sanders,et al.  Dual monogamy inequality for entanglement , 2007 .

[36]  Jeong San Kim Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems , 2018, 1802.00336.

[37]  Yu Guo Any entanglement of assistance is polygamous , 2018, Quantum Inf. Process..

[38]  Barry C. Sanders,et al.  Deterministic entanglement of assistance and monogamy constraints , 2005 .

[39]  Wiesław Leoński,et al.  Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states , 2018 .

[40]  Shao-Ming Fei,et al.  Superactivation of monogamy relations for nonadditive quantum correlation measures , 2019, Physical Review A.

[41]  Barry C. Sanders,et al.  Deterministic entanglement of assistance and monogamy constraints (4 pages) , 2005 .

[42]  S. Fei,et al.  Estimation of concurrence for multipartite mixed states , 2008 .

[43]  Jeong San Kim Tsallis entropy and entanglement constraints in multiqubit systems , 2009, 0911.5181.

[44]  Xianqing Li-Jost,et al.  Improved monogamy relations with concurrence of assistance and negativity of assistance for multiqubit W-class states , 2018, Quantum Inf. Process..