High‐fidelity aerodynamic shape optimization of modern transport wing using efficient hierarchical parameterization

Aerodynamic shape optimization technology is presented, using an efficient domain element parameterization approach. This provides a method that allows geometries to be parameterized at various levels, ranging from gross three-dimensional planform alterations to detailed local surface changes. Design parameters control the domain element point locations and, through efficient global interpolation functions, deform both the surface geometry and corresponding computational fluid dynamics volume mesh, in a fast, high quality, and robust fashion. This results in total independence from the mesh type (structured or unstructured), and optimization independence from the flow-solver is achieved by obtaining gradient information for an advanced gradient-based optimizer by finite-differences. Hence, the optimization tool can be used in conjunction with any flow-solver and/or mesh generator. Results have been presented recently for two-dimensional aerofoil cases, and shown impressive results; drag reductions of up to 45% were demonstrated using only 22 active design parameters. This paper presents the extension of these methods to three dimensions, with results for highly constrained optimization of a modern aircraft wing in transonic cruise. The optimization uses combined global and local parameters, giving 388 design variables, and produces a shock-free geometry with an 18% reduction in drag, with the added advantage of significantly reduced root moments. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Ning Qin,et al.  AERODYNAMIC STUDIES FOR BLENDED WING BODY AIRCRAFT , 2002 .

[2]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[3]  Christian B Allen,et al.  Multigrid convergence of inviscid fixed‐ and rotary‐wing flows , 2002 .

[4]  David W. Zingg,et al.  Aerodynamic Optimization Under a Range of Operating Conditions , 2006 .

[5]  Jamshid A. Samareh,et al.  Status and Future of Geometry Modeling and Grid Generation for Design and Optimization , 1999 .

[6]  Christian B Allen,et al.  Parallel simulation of unsteady hovering rotor wakes , 2006 .

[7]  Armando Vavalle,et al.  Spanwise Lift Distribution for Blended Wing Body Aircraft. , 2005 .

[8]  André L. Tits,et al.  On combining feasibility, descent and superlinear convergence in inequality constrained optimization , 1993, Math. Program..

[9]  M. F. Rubinstein,et al.  Automated Structural Synthesis Using a Reduced Number of Design Coordinates , 1973 .

[10]  Alan Watt,et al.  Advanced animation and rendering techniques , 1992 .

[11]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[12]  B. Kulfan A Universal Parametric Geometry Representation Method - "CST" , 2007 .

[13]  Ijaz H. Parpia,et al.  van Leer flux vector splitting in moving coordinates , 1988 .

[14]  A. Tits,et al.  Nonmonotone line search for minimax problems , 1993 .

[15]  E. Robert,et al.  Rapid Airplane Parametric Input Design (RAPID) , 1995 .

[16]  Christian B Allen,et al.  Parallel universal approach to mesh motion and application to rotors in forward flight , 2007 .

[17]  A. Tits,et al.  User's Guide for FSQP Version 2.0 A Fortran Code for Solving Optimization Problems, Possibly Minimax, with General Inequality Constraints and Linear Equality Constraints, Generating Feasible Iterates , 1990 .

[18]  J. Samareh Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization , 2001 .

[19]  Thomas Rendall,et al.  Development of Generic CFD-Based Aerodynamic Optimisation Tools for Helicopter Rotor Blades , 2007 .

[20]  John E. Bussoletti,et al.  "Fundamental" Parameteric Geometry Representations for Aircraft Component Shapes , 2006 .

[21]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[22]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[23]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[24]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[25]  C. Allen,et al.  Unified fluid–structure interpolation and mesh motion using radial basis functions , 2008 .

[26]  Christian B Allen,et al.  Efficient Mesh Motion using Radial Basis Functions with Data Reduction Algorithms , 2008 .

[27]  Holger Babinsky,et al.  A combined experimental and numerical study of flow structures over three-dimensional shock control bumps , 2008 .

[28]  Christian B Allen,et al.  An unsteady multiblock multigrid scheme for lifting forward flight rotor simulation , 2004 .

[29]  A. Le Moigne,et al.  Parallel adjoint-based optimisation of a blended wing body aircraft with shock control bumps , 2007, The Aeronautical Journal (1968).

[30]  Christian B Allen,et al.  Convergence of steady and unsteady formulations for inviscid hovering rotor solutions , 2003 .

[31]  Patrice Castonguay,et al.  SURVEY OF SHAPE PARAMETERIZATION TECHNIQUES AND ITS EFFECT ON THREE-DIMENSIONAL AERODYNAMIC SHAPE OPTIMIZATION , 2007 .

[32]  Werner Haase,et al.  Progress in Computational Flow-Structure Interaction , 2003 .

[33]  Christian B Allen,et al.  Towards automatic structured multiblock mesh generation using improved transfinite interpolation , 2008 .

[34]  Patrice Castonguay,et al.  Effect of Shape Parameterization on Aerodynamic Shape Optimization , 2007 .

[35]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[36]  Malcolm I. G. Bloor,et al.  Efficient parametrization of generic aircraft geometry , 1995 .

[37]  Christian B Allen,et al.  Unified Approach to CFD-CSD Interpolation and Mesh Motion using Radial Basis Functions , 2007 .