Performance and Safety Tests of Lithium-Ion Cells Arranged in a Matrix Design Configuration
暂无分享,去创建一个
Matrix Packs display large variations in cell bank voltages at the charge and discharge current (C/2) used in this test program. The voltage difference is larger at the end of discharge than at the end of charge under the conditions studied. Disconnection of a cell from the pack leads to a larger voltage difference during discharge (greater than 2.0 V) between the bank that has one less cell and the other banks. Thermal profile does not show any significant changes or increase in temperature after one cell was disconnected from the bank in spite of falling to very low voltages at the end of discharge. All tests on the matrix pack with the HAM displayed lower max in general due to the placement of thermocouple on the outside of the HAM rather than on the cells. Disconnection of cells has almost no influence on the performance of the packs and does not show any abnormal thermal changes for the 100 cycles obtained in this test program. Longer cycle life may influence the performance especially if the low voltage cell goes into reversal. Overcharge leads to CID activation of cells. If the matrix configuration has a larger number of cells in series, (more than 5 S configuration), the limitations of protective devices may manifest itself irrespective of it being in a matrix configuration. External short circuit causes a fire with expulsion of content from some cells. The fire does not propagate itself laterally, but if there was cell module stacking, then the fire would cause the cells above it to also go into flames/thermal runaway. Limitations of protective devices are observed in this case as the PTCs in the cells did not protect under this abusive condition. Matrix configurations seem to provide protection against lateral propagation of fire and flame. Matrix pack configuration seems to provide good performance in spite of losing cell connections; at least for the configuration tested under this program.