Adaptive Finite Difference Method For Traveltime And Amplitude
暂无分享,去创建一个
[1] Sergey Fomel,et al. A variational formulation of the fast marching eikonal solver , 2000 .
[2] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[3] Gerard T. Schuster,et al. Finite‐difference solution of the eikonal equation along expanding wavefronts , 1992 .
[4] S. Gray,et al. Kirchhoff migration using eikonal equation traveltimes , 1994 .
[5] Danping Peng,et al. Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[6] John E. Vidale,et al. Rapid calculation of seismic amplitudes , 1990 .
[7] Moshe Reshef,et al. Migration of common‐shot gathers , 1986 .
[8] P. Lions. Generalized Solutions of Hamilton-Jacobi Equations , 1982 .
[9] C. W. Gear,et al. Numerical initial value problem~ in ordinary differential eqttations , 1971 .
[10] J. Vidale. Finite-difference calculation of travel times , 1988 .
[11] Alexander M. Popovici,et al. Three-dimensional traveltime computation using the fast marching method: 67th SEG Annual Internat , 1997 .
[12] William W. Symes,et al. Upwind finite-difference calculation of traveltimes , 1991 .
[13] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[14] Vlastislav Červený,et al. Ray method in seismology , 1977 .
[15] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[16] W. Schneider. Robust and efficient upwind finite-difference traveltime calculations in three dimensions , 1995 .
[17] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[18] A. Balch,et al. A dynamic programming approach to first arrival traveltime computation in media with arbitrarily distributed velocities , 1992 .