Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results

This paper is devoted to the overview of recent results concerning nonlocal systems of conservation laws. First, we present a predator -- prey model and, second, a model for the laser cutting of metals. In both cases, these equations lead to interesting pattern formation.

[1]  Nicola Bellomo,et al.  Modeling crowd dynamics from a complex system viewpoint , 2012 .

[2]  I. N. Sneddon,et al.  Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .

[3]  Huijiang Zhao FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES WITH SINGULAR INITIAL DATA Lp(p , 1996 .

[4]  J. Nédélec,et al.  First order quasilinear equations with boundary conditions , 1979 .

[5]  Rinaldo M. Colombo,et al.  A traffic model aware of real time data , 2014, 1411.2251.

[6]  H. Urbassek,et al.  On laser fusion cutting of metals , 1987 .

[7]  Urs Eppelt,et al.  Simulation of Laser Cutting , 2009 .

[8]  Markus Gross,et al.  On gas dynamic effects in the modelling of laser cutting processes , 2006 .

[9]  Existence and stability of traveling waves for an integro-differential equation for slow erosion , 2013, 1303.4559.

[10]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[11]  G. Vossen,et al.  Mathematical modelling and stability analysis for laser cutting , 2012 .

[12]  Rinaldo M. Colombo,et al.  Structured Populations, Cell Growth and Measure Valued Balance Laws , 2012 .

[13]  R. Colombo,et al.  A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC , 2011, 1104.2985.

[14]  B. Piccoli,et al.  Time-Evolving Measures and Macroscopic Modeling of Pedestrian Flow , 2008, 0811.3383.

[15]  C. Christoforou SYSTEMS OF HYPERBOLIC CONSERVATION LAWS WITH MEMORY , 2007 .

[16]  R. Fabbro,et al.  Experimental investigation of hydrodynamics of melt layer during laser cutting of steel , 2011 .

[17]  R. Colombo,et al.  Stability and Total Variation Estimates on General Scalar Balance Laws , 2008, 0810.2462.

[18]  M. Herty,et al.  Control of the Continuity Equation with a Non Local Flow , 2009, 0902.2623.

[19]  M. Vičánek,et al.  Momentum and heat transfer of an inert gas jet to the melt in laser cutting , 1987 .

[20]  B. Perthame Transport Equations in Biology , 2006 .

[21]  Paola Goatin,et al.  Existence results for Hughes' model for pedestrian flows , 2014 .

[22]  Rinaldo M. Colombo,et al.  NonLocal Systems of Balance Laws in Several Space Dimensions with Applications to Laser Technolog , 2015, 1504.00163.

[23]  Magali Lécureux-Mercier,et al.  Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow , 2011, 1112.4132.

[24]  E. Rossi,et al.  Hyperbolic predators vs parabolic preys , 2014, 1402.2099.

[25]  E. Rossi,et al.  Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions , 2016 .

[26]  Pavol Quittner,et al.  Superlinear Parabolic Problems , 2007, Birkhäuser Advanced Texts Basler Lehrbücher.

[27]  W. Steen Laser Material Processing , 1991 .

[28]  Rinaldo M. Colombo,et al.  Nonlocal Systems of Conservation Laws in Several Space Dimensions , 2015, SIAM J. Numer. Anal..

[29]  Wolfgang Schulz,et al.  A free boundary problem related to laser beam fusion cutting: ODE approximation , 1997 .

[30]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[31]  P. Lax,et al.  Systems of conservation laws , 1960 .

[32]  Sebastien Blandin,et al.  Well-posedness of a conservation law with non-local flux arising in traffic flow modeling , 2016, Numerische Mathematik.

[33]  R. Colombo,et al.  Nonlocal Crowd Dynamics Models for Several Populations , 2011, 1110.3596.

[34]  Michael Herty,et al.  A hyperbolic model for the laser cutting process , 2013 .

[35]  Corrado Lattanzio,et al.  Global well-posedness and relaxation limits of a model for radiating gas , 2003 .

[36]  Wen Shen,et al.  Global Existence of Large BV Solutions in a Model of Granular Flow , 2009 .

[37]  D. Serre Systems of conservation laws , 1999 .

[38]  R. Colombo,et al.  Hyperbolic Balance Laws with a Non Local Source , 2007, 0704.2031.

[39]  R. LeVeque Numerical methods for conservation laws , 1990 .

[40]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[41]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[42]  R. Colombo,et al.  Lipschitz semigroup for an integro–differential equation for slow erosion , 2012 .

[43]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[44]  Rinaldo M. Colombo,et al.  Rigorous Estimates on Balance Laws in Bounded Domains , 2015, 1504.01907.