First order strong approximations of scalar SDEs defined in a domain

We are interested in strong approximations of one-dimensional SDEs which have non-Lipschitz coefficients and which take values in a domain. Under a set of general assumptions we derive an implicit scheme that preserves the domain of the SDEs and is strongly convergent with rate one. Moreover, we show that this general result can be applied to many SDEs we encounter in mathematical finance and bio-mathematics. We will demonstrate flexibility of our approach by analyzing classical examples of SDEs with sublinear coefficients (CIR, CEV models and Wright–Fisher diffusion) and also with superlinear coefficients (3/2-volatility, Aït-Sahalia model). Our goal is to justify an efficient Multilevel Monte Carlo method for a rich family of SDEs, which relies on good strong convergence properties.

[1]  Sam Howison,et al.  Risk-Neutral Pricing of Financial Instruments in Emission Markets: A Structural Approach , 2012 .

[2]  L. Szpruch,et al.  Convergence, Non-negativity and Stability of a New Milstein Scheme with Applications to Finance , 2012, 1204.1647.

[3]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[4]  Xuerong Mao,et al.  Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients , 2013 .

[5]  D. Dijk,et al.  A comparison of biased simulation schemes for stochastic volatility models , 2008 .

[6]  Jianwei Zhu Modular Pricing of Options: An Application of Fourier Analysis , 2000 .

[7]  Aurélien Alfonsi,et al.  Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process , 2013 .

[8]  Peter E. Kloeden,et al.  Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients , 2009, Numerische Mathematik.

[9]  K. Burrage,et al.  A boundary preserving numerical algorithm for the Wright-Fisher model with mutation , 2012 .

[10]  Aurélien Alfonsi,et al.  On the discretization schemes for the CIR (and Bessel squared) processes , 2005, Monte Carlo Methods Appl..

[11]  Michael Günther,et al.  Structure preserving stochastic integration schemes in interest rate derivative modeling , 2008 .

[12]  L. Szpruch,et al.  Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model , 2011 .

[13]  Stefano M. Iacus,et al.  Simulation and Inference for Stochastic Differential Equations: With R Examples , 2008 .

[14]  Michael Sorensen,et al.  DIFFUSION MODELS FOR EXCHANGE RATES IN A TARGET ZONE , 2007 .

[15]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[16]  Peter E. Kloeden,et al.  Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations , 2011, 1105.0226.

[17]  Leif Andersen Simple and efficient simulation of the Heston stochastic volatility model , 2008 .

[18]  Christian Kahl,et al.  Fast strong approximation Monte Carlo schemes for stochastic volatility models , 2006 .

[19]  L. Szpruch,et al.  An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[21]  P. Kloeden,et al.  Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients , 2010, 1010.3756.

[22]  S. Basov Simulation and Inference for Stochastic Differential Equations: With R Examples , 2010 .

[23]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[24]  D. Higham,et al.  Convergence of Monte Carlo Simulations involving the Mean-Reverting Square Root Process , 2005 .

[25]  L. Szpruch,et al.  Strongly Nonlinear Ait-Sahalia-Type Interest Rate Model and its Numerical Approximation , 2009 .

[26]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[27]  Mireille Bossy,et al.  Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence , 2006 .

[28]  A. Lijoi,et al.  Conditional formulae for Gibbs-type exchangeable random partitions , 2013, 1309.1335.

[29]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[30]  S. Karlin,et al.  A second course in stochastic processes , 1981 .