Numerical continuation methods: a perspective

In this historical perspective the principal numerical approaches to continuation methods are outlined in the framework of the mathematical sources that contributed to their development, notably homotopy and degree theory, simplicial complexes and mappings, submanifolds defined by submersions, and singularity and foldpoint theory.

[1]  Masha Sosonkina,et al.  Algorithm 777: HOMPACK90: a suite of Fortran 90 codes for globally convergent homotopy algorithms , 1997, TOMS.

[2]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..

[3]  Werner C. Rheinboldt,et al.  A locally parameterized continuation process , 1983, TOMS.

[4]  T Watson Layne,et al.  POLSYS_PLP: A Partitioned Linear Product Homotopy Code for Solving Polynomial Systems of Equations , 1998 .

[5]  R. Abraham,et al.  Manifolds, tensor analysis, and applications: 2nd edition , 1988 .

[6]  Layne T. Watson,et al.  Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.

[7]  J. Yorke,et al.  A homotopy method for locating all zeros of a system of polynomials , 1979 .

[8]  Ivo Babuška,et al.  A Posteriori Error Estimates of Finite Element Solutions of Parametrized Nonlinear Equations , 1992 .

[9]  D. S. Mackey,et al.  A new algorithm for two-dimensional numerical continuation , 1995 .

[10]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[11]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[12]  I. Fazekas Hellinger Transform of Gaussian Autoregressive Processes , 1994 .

[13]  Werner C. Rheinboldt,et al.  On the sensitivity of solutions of parameterized equations , 1993 .

[14]  E. Allgower,et al.  Numerical path following , 1997 .

[15]  E. Allgower,et al.  Piecewise linear methods for nonlinear equations and optimization , 2000 .

[16]  Stefan Gnutzmann,et al.  Simplicial pivoting for mesh generation of implicity defined surfaces , 1991, Comput. Aided Geom. Des..

[17]  Steven M. Wise,et al.  Algorithm 801: POLSYS_PLP: a partitioned linear product homotopy code for solving polynomial systems of equations , 2000, TOMS.

[18]  E. Allgower,et al.  An Algorithm for Piecewise-Linear Approximation of an Implicitly Defined Manifold , 1985 .

[19]  M. Golubitsky,et al.  Singularities and Groups in Bifurcation Theory: Volume I , 1984 .

[20]  W. Rheinboldt MANPAK: A set of algorithms for computations on implicitly defined manifolds , 1996 .

[21]  P. Deuflhard,et al.  Efficient numerical path following beyond critical points , 1987 .

[22]  A. Morgan Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .

[23]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[24]  Edmond Lahaye,et al.  Une méthode de résolution d'une catégorie d'équations transcendantes , 1934 .

[25]  H. Keller Lectures on Numerical Methods in Bifurcation Problems , 1988 .

[26]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[27]  Werner C. Rheinboldt,et al.  On a computational method for the second fundamental tensor and its application to bifurcation problems , 1990 .

[28]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[29]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[30]  H. B. Keller Global Homotopies and Newton Methods , 1978 .

[31]  M. Todd The Computation of Fixed Points and Applications , 1976 .

[32]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[33]  W. Rheinboldt,et al.  On the computation of manifolds of foldpoints for parameter-dependent problems , 1990 .

[34]  C. D. Boor,et al.  Recent Advances in Numerical Analysis. , 1982 .

[35]  W. Rheinboldt,et al.  On the Discretization Error of Parametrized Nonlinear Equations , 1983 .

[36]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[37]  J. Schwartz Nonlinear Functional Analysis , 1969 .

[38]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[39]  J. Vickers MANIFOLDS, TENSOR ANALYSIS AND APPLICATIONS (2nd edition) (Applied Mathematical Sciences 75) , 1990 .

[40]  J. P. Fink,et al.  A geometric framework for the numerical study of singular points , 1987 .

[41]  Werner C. Rheinboldt,et al.  Solution Fields of Nonlinear Equations and Continuation Methods , 1980 .

[42]  W. Rheinboldt On the computation of multi-dimensional solution manifolds of parametrized equations , 1988 .

[43]  Michael Shub,et al.  Some Remarks on Bezout’s Theorem and Complexity Theory , 1993 .

[44]  Bin Hong Computational Methods for Bifurcation Problems with Symmetries on the Manifold , 1991 .

[45]  Werner C. Rheinboldt,et al.  Methods for solving systems of nonlinear equations , 1987 .

[46]  J. Yorke,et al.  Finding zeroes of maps: homotopy methods that are constructive with probability one , 1978 .