Nonorthogonal Tensor Matricization for Hyperspectral Image Filtering

A generalized multidimensional Wiener filter for denoising is adapted to hyperspectral images (HSIs). multidimensional wiener filtering (MWF) uses the signal subspace of each n-mode flattening matrix of the HSI, which is a third-order tensor. However, in the HSI case, the n-mode ranks are close to the n-mode dimensions. Thus, the signal subspace dimension can be underestimated. This leads to a loss of spatial resolution-edge blurring-and artifacts in the restored HSI. To cope with the underestimation while preserving edges, a new method is proposed. It estimates the relevant directions of flattening that may not be parallel to HSI dimensions. We adapt the bidimensional straight line detection algorithm that estimates the HSI main directions, which are used to flatten the HSI tensor. We also generalize the quadtree decomposition to tensors in order to adapt the filtering to the local image characteristics. Comparative studies with MWF, principal component analysis-stationary wavelet transform, and channel-by-channel Wiener filtering show that our algorithm provides better performance while restoring impaired HYDICE HSIs.

[1]  Shen-En Qian,et al.  Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[2]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[3]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[5]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[6]  Julien Marot,et al.  Contour Estimation by Array Processing Methods , 2006, EURASIP J. Adv. Signal Process..

[7]  H. Akaike A new look at the statistical model identification , 1974 .

[8]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[9]  Hamid K. Aghajan,et al.  SLIDE: subspace-based line detection , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[11]  Jia-Shung Wang,et al.  Adaptive post-processing for region-based fractal image compression , 2000, Proceedings DCC 2000. Data Compression Conference.

[12]  Amnon Shashua,et al.  Linear image coding for regression and classification using the tensor-rank principle , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[13]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[14]  Robert W. Basedow,et al.  HYDICE: an airborne system for hyperspectral imaging , 1993, Defense, Security, and Sensing.

[15]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[16]  B. Everitt,et al.  Three-Mode Principal Component Analysis. , 1986 .

[17]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[18]  Gary A. Shaw,et al.  Hyperspectral subpixel target detection using the linear mixing model , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  Douglas L. Jones,et al.  Wavelet-based hyperspectral image estimation , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[20]  Andreas Ziehe,et al.  Unmixing Hyperspectral Data , 1999, NIPS.

[21]  Salah Bourennane,et al.  Survey on tensor signal algebraic filtering , 2007, Signal Process..