Computation of fractional integrals via functions of hypergeometric and Bessel type
暂无分享,去创建一个
[1] A. Kilbas,et al. A modified Bessel-type integral transform and its compositions with fractional calculus operators on spaces F p, m and F ′ p, m , 2000 .
[2] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[3] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[4] Yu. A. Brychkov,et al. Integrals and series , 1992 .
[5] Thomas J. Osler,et al. Fractional Derivatives and Special Functions , 1976 .
[6] T. Osler. Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .
[7] Thomas J. Osler,et al. Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .
[8] T. P. Higgins. THE RODRIGUES OPERATOR TRANSFORM, TABLES OF GENERALIZED RODRIGUES FORMULAS , 1965 .
[9] A. Erdélyi,et al. Tables of integral transforms , 1955 .
[10] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[11] 西本 勝之,et al. Fractional calculus : integrations and differentiations of arbitrary order , 1984 .
[12] Thomas J. Osler,et al. Fundamental properties of fractional derivatives via pochhammer integrals , 1975 .
[13] E. Krätzel. Bemerkungen zur Meijer-Transformation und Anwendungen , 1965 .