Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation
暂无分享,去创建一个
[1] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[2] Dongmei Xiao,et al. Limit Cycles for the Competitive Three Dimensional Lotka–Volterra System , 2000 .
[3] Valery G. Romanovski,et al. Centers and limit cycles in polynomial systems of ordinary differential equations , 2016 .
[4] Pei Yu,et al. Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields , 2005 .
[5] Songling Shi,et al. A CONCRETE EXAMPLE OF THE EXISTENCE OF FOUR LIMIT CYCLES FOR PLANE QUADRATIC SYSTEMS , 1980 .
[6] Changbo Chen,et al. An Application of Regular Chain Theory to the Study of Limit cycles , 2013, Int. J. Bifurc. Chaos.
[7] Chengzhi Li,et al. A cubic system with thirteen limit cycles , 2009 .
[8] Mats Gyllenberg,et al. Four limit cycles for a three-dimensional competitive Lotka-Volterra system with a heteroclinic cycle , 2009, Comput. Math. Appl..
[9] H. Poincaré,et al. Mémoire sur les courbes définies par une équationdifférentielle (I) , 1881 .
[10] Pei Yu,et al. Twelve limit cycles around a singular point in a planar cubic-degree polynomial system , 2014, Commun. Nonlinear Sci. Numer. Simul..
[11] Yun Tian,et al. An Explicit Recursive Formula for Computing the Normal Form and Center Manifold of General n-Dimensional differential Systems associated with Hopf bifurcation , 2013, Int. J. Bifurc. Chaos.
[12] D. Hilbert. Mathematical Problems , 2019, Mathematics: People · Problems · Results.
[13] Zhengyi Lu,et al. Two limit cycles in three-dimensional Lotka-Volterra systems☆ , 2002 .
[14] Josef Hofbauer,et al. Multiple limit cycles for three dimensional Lotka-Volterra equations , 1994 .
[15] Yirong Liu,et al. New Results on the Study of Zq-Equivariant Planar Polynomial Vector Fields , 2010 .
[16] H. Poincaré,et al. Sur les courbes définies par les équations différentielles(III) , 1885 .
[17] Y. Ilyashenko,et al. Finitely-smooth normal forms of local families of diffeomorphisms and vector fields , 1991 .
[18] Yun Tian,et al. Seven Limit Cycles Around a Focus Point in a Simple Three-Dimensional Quadratic Vector Field , 2014, Int. J. Bifurc. Chaos.
[19] Pei Yu,et al. Bifurcation of limit cycles in 3rd-order Z2 Hamiltonian planar vector fields with 3rd-order perturbations , 2013, Commun. Nonlinear Sci. Numer. Simul..
[20] Jean Ecalle,et al. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac , 1992 .
[21] Mats Gyllenberg,et al. A 3D competitive Lotka-Volterra system with three limit cycles: A falsification of a conjecture by Hofbauer and So , 2006, Appl. Math. Lett..
[22] Pei Yu,et al. Four Limit cycles from perturbing quadratic integrable Systems by quadratic polynomials , 2010, Int. J. Bifurc. Chaos.
[23] Valery G. Romanovski,et al. STABILITY AND PERIODIC OSCILLATIONS IN THE MOON-RAND SYSTEMS , 2013 .
[24] N. N. Bautin,et al. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type , 1954 .