Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation

Abstract In this paper, we show that perturbing a simple 3-d quadratic system with a center-type singular point can yield at least 10 small-amplitude limit cycles around a singular point. This result improves the 7 limit cycles obtained recently in a simple 3-d quadratic system around a Hopf singular point. Compared with Bautin’s result for quadratic planar vector fields, which can only have 3 small-amplitude limit cycles around an elementary center or focus, this result of 10 limit cycles is surprisingly high. The theory and methodology developed in this paper can be used to consider bifurcation of limit cycles in higher-dimensional systems.

[1]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[2]  Dongmei Xiao,et al.  Limit Cycles for the Competitive Three Dimensional Lotka–Volterra System , 2000 .

[3]  Valery G. Romanovski,et al.  Centers and limit cycles in polynomial systems of ordinary differential equations , 2016 .

[4]  Pei Yu,et al.  Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields , 2005 .

[5]  Songling Shi,et al.  A CONCRETE EXAMPLE OF THE EXISTENCE OF FOUR LIMIT CYCLES FOR PLANE QUADRATIC SYSTEMS , 1980 .

[6]  Changbo Chen,et al.  An Application of Regular Chain Theory to the Study of Limit cycles , 2013, Int. J. Bifurc. Chaos.

[7]  Chengzhi Li,et al.  A cubic system with thirteen limit cycles , 2009 .

[8]  Mats Gyllenberg,et al.  Four limit cycles for a three-dimensional competitive Lotka-Volterra system with a heteroclinic cycle , 2009, Comput. Math. Appl..

[9]  H. Poincaré,et al.  Mémoire sur les courbes définies par une équationdifférentielle (I) , 1881 .

[10]  Pei Yu,et al.  Twelve limit cycles around a singular point in a planar cubic-degree polynomial system , 2014, Commun. Nonlinear Sci. Numer. Simul..

[11]  Yun Tian,et al.  An Explicit Recursive Formula for Computing the Normal Form and Center Manifold of General n-Dimensional differential Systems associated with Hopf bifurcation , 2013, Int. J. Bifurc. Chaos.

[12]  D. Hilbert Mathematical Problems , 2019, Mathematics: People · Problems · Results.

[13]  Zhengyi Lu,et al.  Two limit cycles in three-dimensional Lotka-Volterra systems☆ , 2002 .

[14]  Josef Hofbauer,et al.  Multiple limit cycles for three dimensional Lotka-Volterra equations , 1994 .

[15]  Yirong Liu,et al.  New Results on the Study of Zq-Equivariant Planar Polynomial Vector Fields , 2010 .

[16]  H. Poincaré,et al.  Sur les courbes définies par les équations différentielles(III) , 1885 .

[17]  Y. Ilyashenko,et al.  Finitely-smooth normal forms of local families of diffeomorphisms and vector fields , 1991 .

[18]  Yun Tian,et al.  Seven Limit Cycles Around a Focus Point in a Simple Three-Dimensional Quadratic Vector Field , 2014, Int. J. Bifurc. Chaos.

[19]  Pei Yu,et al.  Bifurcation of limit cycles in 3rd-order Z2 Hamiltonian planar vector fields with 3rd-order perturbations , 2013, Commun. Nonlinear Sci. Numer. Simul..

[20]  Jean Ecalle,et al.  Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac , 1992 .

[21]  Mats Gyllenberg,et al.  A 3D competitive Lotka-Volterra system with three limit cycles: A falsification of a conjecture by Hofbauer and So , 2006, Appl. Math. Lett..

[22]  Pei Yu,et al.  Four Limit cycles from perturbing quadratic integrable Systems by quadratic polynomials , 2010, Int. J. Bifurc. Chaos.

[23]  Valery G. Romanovski,et al.  STABILITY AND PERIODIC OSCILLATIONS IN THE MOON-RAND SYSTEMS , 2013 .

[24]  N. N. Bautin,et al.  On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type , 1954 .