Phases of N = 2 theories in two dimensions
暂无分享,去创建一个
[1] O. García-Prada. DIMENSIONAL REDUCTION OF STABLE BUNDLES, VORTICES AND STABLE PAIRS , 1994 .
[2] David A. Cox. The homogeneous coordinate ring of a toric variety , 2013 .
[3] E. Witten. On the Landau-Ginzburg description of N=2 minimal models , 1993, hep-th/9304026.
[4] Victor V. Batyrev,et al. Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori , 1993 .
[5] B. Greene,et al. Multiple mirror manifolds and topology change in string theory , 1993, hep-th/9301043.
[6] P. Aspinwall,et al. Topological field theory and rational curves , 1991, hep-th/9110048.
[7] M. Thaddeus. Stable pairs, linear systems and the Verlinde formula , 1992, alg-geom/9210007.
[8] M. Kreuzer,et al. NO MIRROR SYMMETRY IN LANDAU-GINZBURG SPECTRA! , 1992, hep-th/9205004.
[9] J. Bagger,et al. Supersymmetry and Supergravity , 1992 .
[10] E. Witten,et al. Calabi‐Yau Manifolds: A Bestiary for Physicists , 1992 .
[11] C. Vafa,et al. Exact results for supersymmetric sigma models. , 1991, Physical review letters.
[12] M. Roček,et al. Duality, quotients, and currents , 1991, hep-th/9110053.
[13] Tristan Hübsck,et al. Calabi-Yau manifolds , 1992 .
[14] E. Witten. Mirror Manifolds And Topological Field Theory , 1991, hep-th/9112056.
[15] S. Bradlow,et al. MODULI OF STABLE PAIRS FOR HOLOMORPHIC BUNDLES OVER RIEMANN SURFACES II , 1991 .
[16] Xenia de la Ossa,et al. A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory , 1991 .
[17] L. Girardello,et al. Singularity-theory and N=2 supersymmetry , 1991 .
[18] Tristan Hubsch. Of marginal kinetic terms and anomalies , 1991 .
[19] S. Cecotti. N=2 LANDAU-GINZBURG VS. CALABI-YAU σ-MODELS: NON-PERTURBATIVE ASPECTS , 1991 .
[20] C. Vafa. TOPOLOGICAL LANDAU-GINZBURG MODELS , 1991 .
[21] Tristan Hubsch. How singular a space can superstrings thread , 1991 .
[22] S. Bradlow. Special metrics and stability for holomorphic bundles with global sections , 1991 .
[23] S. Gates,et al. Calabi-Yau heterotic strings and unidexterous σ-models , 1990 .
[24] Tristan Hubsch. Chameleonic σ-models , 1990 .
[25] M. Lynker,et al. Calabi-Yau manifolds in weighted P4 , 1990 .
[26] T. Eguchi,et al. N = 2 superconformal models as topological field theories , 1990 .
[27] E. Martinec. Criticality, Catastrophes, and Compactiftcations , 1990 .
[28] L. Girardello,et al. Non-perturbative aspects and exact results for the N = 2 Landau-Ginsburg models , 1989 .
[29] S. Sternberg,et al. Birational equivalence in the symplectic category , 1989 .
[30] Nicholas P. Warner,et al. Chiral rings in N = 2 superconformal theories , 1989 .
[31] C. Vafa,et al. Calabi-Yau manifolds and renormalization group flows , 1989 .
[32] S. Gates,et al. Unidexterous locally supersymmetric actions for Calabi-Yau compactifications , 1989 .
[33] Nicholas P. Warner,et al. Catastrophes and the classification of conformal theories , 1989 .
[34] S. Gates,et al. Extended D=2 supergravity theories and their lower superspace realisations , 1988 .
[35] Ulf Lindström,et al. New supersymmetric σ-models with Wess-Zumino terms , 1988 .
[36] Edward Witten,et al. Topological sigma models , 1988 .
[37] D. Gepner. Space-time supersymmetry in compactified string theory and superconformal models , 1988 .
[38] P. Landweber,et al. Elliptic Curves and Modular Forms in Algebraic Topology , 1988 .
[39] M. Dine. Nonperturbative Effects on the String World Sheet (Ii) , 1988 .
[40] B. Greene,et al. Aspects of (2,0) string compactifications , 1988 .
[41] E. Witten. The index of the dirac operator in loop space , 1988 .
[42] D. Gepner. String Theory on Calabi-yau Manifolds: The Three Generations Case , 1993, hep-th/9301089.
[43] D. Gepner. Exactly solvable string compactifications on manifolds of SU(N) holonomy , 1987 .
[44] M. Roček,et al. Hyperkähler metrics and supersymmetry , 1987 .
[45] E. Witten. Elliptic genera and quantum field theory , 1987 .
[46] J. Kollár. The structure of algebraic threefolds: an introduction to Mori's program , 1987 .
[47] R. Schimmrigk. A new construction of a three-generation Calabi-Yau manifold , 1987 .
[48] E. Witten,et al. Nonperturbative Effects on the String World Sheet , 1987 .
[49] N. Warner,et al. Anomalies, characters and strings , 1987 .
[50] N. Warner,et al. Anomaly cancellation and self-dual lattices , 1986 .
[51] M. Dine,et al. (2,0) Superspace , 1986 .
[52] P. Freund. Introduction to Supersymmetry: Supergravities: locally supersymmetric theories , 1986 .
[53] S. Gates,et al. Unidexterous D=2 Supersymmetry in Superspace , 1986 .
[54] E. Witten,et al. Supersymmetric sigma models and the heterotic string , 1985 .
[55] Christopher M. Hull,et al. Twisted multiplets and new supersymmetric non-linear σ-models☆☆☆★ , 1984 .
[56] S. Gates. Superspace formulation of new non-linear sigma models , 1984 .
[57] A. Davis,et al. An effective action for the supersymmetric CPn−1 model , 1983 .
[58] S. Gates,et al. Superspace or One Thousand and One Lessons in Supersymmetry , 1983, hep-th/0108200.
[59] H. Nicolai. Introduction to Supersymmetry and Supergravity , 1983 .
[60] Shlomo Sternberg,et al. Geometric quantization and multiplicities of group representations , 1982 .
[61] J. Duistermaat,et al. On the variation in the cohomology of the symplectic form of the reduced phase space , 1982 .
[62] P. Newstead. Lectures on Introduction to Moduli Problems and Orbit Spaces , 1979 .
[63] S. Coleman. More About the Massive Schwinger Model , 1976 .
[64] D. Mumford,et al. Geometric Invariant Theory , 2011 .