A Likelihood-Based Multiple Access for Estimation in Sensor Networks

In a wireless sensor network (WSN), the nodes collect independent observations about a nonrandom parameter thetas to be estimated, and deliver informations to a fusion center (FC) by transmitting suitable waveforms through a common multiple access channel (MAC). The FC implements some appropriate fusion rule and outputs the final estimate of thetas. In this paper, we introduce a new access/estimation scheme, here referred to as likelihood-based multiple access (LBMA), and prove it to be asymptotically efficient in the limit of increasingly large number of sensors , when the used bandwidth is allowed to scale as W ~capalpha,O.5 < alpha < 1 . The proposed approach is easy to implement, and simply relies upon the very basic property that the log likelihood is additive for independent observations, and upon the fact that the (noiseless) output of the MAC is just the sum of its inputs. Thus, the optimal fusion rule is automatically implemented by the MAC itself.

[1]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[2]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[3]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[4]  Jamie S. Evans,et al.  Large system performance of linear multiuser receivers in multipath fading channels , 2000, IEEE Trans. Inf. Theory.

[5]  Ke Liu,et al.  Asymptotically optimal decentralized type-based detection in wireless sensor networks , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  Ke Liu,et al.  On optimal parametric field estimation in sensor networks , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[7]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[8]  Cindy C. Parman,et al.  To code, or not to code? , 2003, The Journal of oncology management : the official journal of the American College of Oncology Administrators.

[9]  T. Duman,et al.  Decentralized detection over multiple-access channels , 1998 .

[10]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[11]  Venugopal V. Veeravalli,et al.  Decentralized detection in sensor networks , 2003, IEEE Trans. Signal Process..

[12]  Peter Willett,et al.  Asymptotic Design of Quantizers for Decentralized MMSE Estimation , 2007, IEEE Transactions on Signal Processing.

[13]  P. Lachenbruch Mathematical Statistics, 2nd Edition , 1972 .

[14]  Huang Zhihua,et al.  FUNDAMENTAL PERFORMANCE LIMITS OF WIRELESS SENSOR NETWORKS , 2004 .

[15]  Amy R. Reibman,et al.  Design of quantizers for decentralized estimation systems , 1993, IEEE Trans. Commun..

[16]  Lang Tong,et al.  Type based estimation over multiaccess channels , 2006, IEEE Transactions on Signal Processing.

[17]  M. Vetterli,et al.  Sensing reality and communicating bits: a dangerous liaison , 2006, IEEE Signal Processing Magazine.

[18]  Brian M. Sadler,et al.  Fundamentals of energy-constrained sensor network systems , 2005, IEEE Aerospace and Electronic Systems Magazine.

[19]  Rick S. Blum,et al.  Distributed detection with multiple sensors I. Advanced topics , 1997, Proc. IEEE.

[20]  M. Vetterli Distributed signal processing for sensor networks , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[21]  Zhi-Quan Luo,et al.  Distributed signal processing in sensor networks [from the guest Editors] , 2006, IEEE Signal Processing Magazine.

[22]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[23]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[24]  S. Rice Mathematical analysis of random noise , 1944 .

[25]  A. Wald Note on the Consistency of the Maximum Likelihood Estimate , 1949 .

[26]  Kung Yao,et al.  Special Issue on “Wireless Sensor Networks” , 2009, J. Signal Process. Syst..

[27]  Lang Tong,et al.  Sensor networks with mobile agents , 2003, IEEE Military Communications Conference, 2003. MILCOM 2003..

[28]  Pramod K. Varshney,et al.  Distributed detection with multiple sensors I. Fundamentals , 1997, Proc. IEEE.

[29]  Michael Gastpar,et al.  On the capacity of large Gaussian relay networks , 2005, IEEE Transactions on Information Theory.

[30]  Stephen B. Wicker,et al.  FUNDAMENTAL PERFORMANCE LIMITS OF WIRELESS SENSOR NETWORKS , 2004 .

[31]  G.B. Giannakis,et al.  Distributed compression-estimation using wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[32]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[33]  Zhi-Quan Luo,et al.  Distributed signal processing in sensor networks , 2006 .

[34]  John A. Gubner,et al.  Distributed estimation and quantization , 1993, IEEE Trans. Inf. Theory.

[35]  D. Slepian,et al.  On bandwidth , 1976, Proceedings of the IEEE.

[36]  R.N. Bracewell,et al.  Signal analysis , 1978, Proceedings of the IEEE.

[37]  Stephen C. Arnold,et al.  Kendall's advanced theory of statistics. Vol.2A: Classical inference and the linear model , 1999 .

[38]  Mingyan Liu,et al.  Eurasip Journal on Wireless Communications and Networking: Editorial , 2005 .

[39]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.