Not innocent: verdict from ab initio multiconfigurational second-order perturbation theory on the electronic structure of chloroiron corrole.

From a suitably broad perspective, transition metal corroles may be viewed as stable, synthetic analogues of high-valent heme protein intermediates such as compounds I and II. Against this backdrop, the electronic structure of chloroiron corrole has provoked a lively debate in recent years. Thus, whereas NMR spectroscopy and DFT calculations suggest an S = 3/2 Fe(III) corrole (*2-) radical description, certain researchers have favored an Fe(IV) formulation. These two descriptions are indistinguishable as far as DFT calculations are concerned. Ab initio CASSCF/CASPT2 calculations provide unambiguous support for the former description. In addition, they rule out any Fe(IV) state, whether high- or low-spin, within 1.5 eV of the ground state.