Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory.

Free-space optical communication can allow high-bandwidth data links that are hard to detect, intercept, or jam. This makes them attractive for many applications. However, these links also require very accurate pointing, and their availability is affected by weather. These challenges have limited the deployment of free-space optical systems. The U.S. Naval Research Laboratory has, for the last 15 years, engaged in research into atmospheric propagation and photonic components with a goal of characterizing and overcoming these limitations. In addition several demonstrations of free-space optical links in real-world Navy applications have been conducted. This paper reviews this work and the principles guiding it.

[1]  Christopher I. Moore,et al.  Characterization of impact ionization engineered InGaAs avalanche photodiodes , 2011, Defense + Commercial Sensing.

[2]  Harris R. Burris,et al.  Modulating Retro-Reflector Lasercom Systems for Small Unmanned Vehicles , 2012, IEEE Journal on Selected Areas in Communications.

[3]  Christopher I. Moore,et al.  InGaAs avalanche photodiode arrays for simultaneous communications and tracking , 2011, Optical Engineering + Applications.

[4]  Marvin B. Klein,et al.  Large aperture stark modulated retroreflector at 10.8 μm , 1980 .

[5]  Hennes Henniger,et al.  Fading-loss assessment in atmospheric free-space optical communication links with on-off keying , 2008 .

[6]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[7]  Rita Mahon,et al.  Free space optical communication link using a silicon photonic optical phased array , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[8]  Vaclav Kvicera,et al.  Physical and statistical modeling of attenuation due to atmospheric hydrometeors on free-space optical links at 850 and 1550 nm , 2012, Optics & Photonics - Optical Engineering + Applications.

[9]  V.W.S. Chan,et al.  Free-Space Optical Communications , 2006, Journal of Lightwave Technology.

[10]  J.C. Campbell,et al.  Recent Advances in Telecommunications Avalanche Photodiodes , 2007, Journal of Lightwave Technology.

[11]  D.S. Katzer,et al.  A cat's eye multiple quantum-well modulating retro-reflector , 2003, IEEE Photonics Technology Letters.

[12]  L. Coldren,et al.  Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. , 2011, Optics express.

[13]  R. Mahon,et al.  A surface-normal coupled-quantum-well modulator at 1.55 microns , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[14]  G. C. Gilbreath,et al.  45-Mbit/s cat’s-eye modulating retroreflectors , 2007 .

[15]  William S. Rabinovich,et al.  Diversity effects in modulating retro-reflector links , 2014, Defense + Security Symposium.

[16]  D. Shaver,et al.  Arrays of InP-based Avalanche Photodiodes for Photon Counting , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Edward A. Watson,et al.  A Review of Phased Array Steering for Narrow-Band Electrooptical Systems , 2009, Proceedings of the IEEE.

[18]  Isaac I. Kim,et al.  Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system , 1998 .

[19]  M. J. Goodwin,et al.  Low-voltage InGaAs/InP multiple-quantum-well reflective Fabry-Perot modulators for optical communications at microwave frequencies , 1992 .

[20]  Z. Ghassemlooy,et al.  Modeling of Fog and Smoke Attenuation in Free Space Optical Communications Link Under Controlled Laboratory Conditions , 2013, Journal of Lightwave Technology.

[21]  Joseph M. Kahn,et al.  Performance bounds for coded free-space optical communications through atmospheric turbulence channels , 2003, IEEE Trans. Commun..

[22]  R. Mahon,et al.  A surface-normal coupled-quantum-well modulator at 1.55 /spl mu/m , 2004, IEEE Photonics Technology Letters.

[23]  Christopher I. Moore,et al.  Large diameter high-speed InGaAs receivers for free-space lasercom , 2007, SPIE Defense + Commercial Sensing.

[24]  Z. Sodnik,et al.  Optical Intersatellite Communication , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  Norman S. Kopeika,et al.  Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation , 1992 .

[26]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[27]  Christopher I. Moore,et al.  Development of a large area InGaAs APD receiver based on an impact ionization engineered detector for free-space lasercomm applications , 2012, Defense + Commercial Sensing.

[28]  A. Goldsmith Communication by Means of Reflected Power , 2022 .

[29]  Frida Strömqvist Vetelino,et al.  Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence. , 2007, Applied optics.

[30]  Isaac I. Kim,et al.  Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications , 2001, SPIE Optics East.

[31]  Ray T. Chen,et al.  1 × 12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane , 2011 .

[32]  Christopher I. Moore,et al.  Characterization of InGaAs avalanche photodiode arrays with varying geometries for free-space optical communication , 2012, Defense + Commercial Sensing.

[33]  Ondrej Fiser,et al.  Rain attenuation measurement and prediction on parallel 860-nm free space optical and 58-GHz millimeter-wave paths , 2012 .

[34]  Christopher I. Moore,et al.  Naval Research Laboratory scintillation playback system for bench top lasercomm testing , 2010, Defense + Commercial Sensing.

[35]  Santanu Das,et al.  Requirements and challenges for tactical free-space Lasercomm , 2008, MILCOM 2008 - 2008 IEEE Military Communications Conference.

[36]  Steven Cornelissen,et al.  Secure optical communication system utilizing deformable MEMS mirrors , 2009, MOEMS-MEMS.

[37]  J. B. Ross,et al.  Coherent CO(2) laser communication system with modulable retroreflectors. , 1995, Applied optics.

[38]  Carlo Capsoni,et al.  Estimating the spatial cumulative distribution of rain from precipitation amounts , 2012 .

[39]  D. Miller,et al.  Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules , 1986 .

[40]  James H. Churnside,et al.  Probability density of irradiance scintillations for strong path-integrated refractive turbulence , 1987 .

[41]  G. C. Mooradian,et al.  Shipboard Electro-Optic System Integration , 1977, Other Conferences.

[42]  Markus Knapek,et al.  Optical Communications for High-Altitude Platforms , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[43]  Larry B. Stotts,et al.  Hybrid optical radio frequency airborne communications , 2012 .

[44]  Ivan B. Djordjevic,et al.  Deep-Space Optical Communications: Future Perspectives and Applications , 2011, Proceedings of the IEEE.

[45]  R. Baets,et al.  Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. , 2009, Optics letters.

[46]  G. C. Gilbreath,et al.  Free space optical communications research at the U.S. Naval Research Laboratory , 2010, LASE.

[47]  Carlo Capsoni,et al.  The impact of space and time averaging on the spatial correlation of rainfall , 2012 .

[48]  Robert K. Crane,et al.  Prediction of Attenuation by Rain , 1980, IEEE Trans. Commun..

[49]  Xudong Jiang,et al.  Geiger-Mode APD Single Photon Detectors , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[50]  Mark L Stevens,et al.  781 Mbit/s photon-counting optical communications using a superconducting nanowire detector. , 2006, Optics letters.

[51]  Christopher I. Moore,et al.  Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment , 2005 .

[52]  Robert Q. Fugate,et al.  Low-power FLC-based retromodulator communications system , 1997, Photonics West.

[53]  Christopher I. Moore,et al.  Atmospheric transmission from an instrument measuring scatter at 1550 nm , 2013, Defense, Security, and Sensing.

[54]  Christopher I. Moore,et al.  Large area adaptive avalanche photodetector arrays for free-space optical communication , 2008, Optical Engineering + Applications.

[55]  R. J. Magliocco,et al.  Architecture overview and data summary of a 5.4 km free-space laser communication experiment , 2009, Optical Engineering + Applications.

[56]  F. Vasey,et al.  Spatial optical beam steerin with an AlGaAs integrated phased array. , 1993, Applied optics.

[57]  Rita Mahon,et al.  Analysis of long-term measurements of laser propagation over the Chesapeake Bay. , 2009, Applied optics.

[58]  J.A. Mittereder,et al.  High-Performance Chirped Electrode Design for Cat's Eye Retro-Reflector Modulators , 2006, IEEE Photonics Technology Letters.

[59]  Michael J. Vilcheck,et al.  Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles , 2001 .

[60]  Rita Mahon,et al.  InAlAs/InGaAs avalanche photodiode arrays for free space optical communication. , 2015, Applied optics.

[61]  Salah Bourennane,et al.  Channel coding and time-diversity for optical wireless links. , 2009, Optics express.

[62]  Bryan S. Robinson,et al.  The Lunar Laser Communication Demonstration: NASA’s First Step Toward Very High Data Rate Support of Science and Exploration Missions , 2014 .

[63]  T. Wood Multiple quantum well (MQW) waveguide modulators , 1988 .

[64]  Murat Uysal,et al.  Error rate performance of coded free-space optical links over strong turbulence channels , 2004, IEEE Communications Letters.

[65]  Mike Ferraro,et al.  Probability density of irradiance fluctuations observed over terrestrial ranges. , 2011, Applied optics.