Sparse Representations for Radar with MATLAB Examples

Although the field of sparse representations is relatively new, research activities in academic and industrial research labs are already producing encouraging results. The sparse signal or parameter model motivated several researchers and practitioners to explore high complexity/wide bandwidth applications such as Digital TV, MRI processing, and certain defense applications. The potential signal processing advancements in this area may influence radar technologies. This book presents the basic mathematical concepts along with a number of useful MATLAB examples to emphasize the practical implementations both inside and outside the radar field.

[1]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[2]  T. Blumensath,et al.  Faster & greedier: algorithms for sparse reconstruction of large datasets , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.

[3]  Edoardo Amaldi,et al.  On the Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear Systems , 1998, Theor. Comput. Sci..

[4]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[5]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Eric R. Keydel,et al.  MSTAR extended operating conditions: a tutorial , 1996, Defense, Security, and Sensing.

[7]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[8]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[9]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..

[10]  Mark A. Richards,et al.  Fundamentals of Radar Signal Processing , 2005 .

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[13]  Yoram Bresler,et al.  A fast and accurate Fourier algorithm for iterative parallel-beam tomography , 1996, IEEE Trans. Image Process..

[14]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[15]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[16]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[17]  Jian Li,et al.  MIMO Radar with Colocated Antennas , 2007, IEEE Signal Processing Magazine.

[18]  Jong-Sen Lee,et al.  Disaster monitoring and environmental alert in Taiwan by repeat-pass spaceborne SAR , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[19]  Mike E. Davies,et al.  Gradient Pursuits , 2008, IEEE Transactions on Signal Processing.

[20]  Charles V. Jakowatz,et al.  Shift–Scale Complex Correlation for Wide-Angle Coherent Cross-Track SAR Stereo Processing , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Rafael A. Calvo,et al.  Fast Dimensionality Reduction and Simple PCA , 1998, Intell. Data Anal..

[22]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[23]  I. Jolliffe Principal Component Analysis , 2002 .

[24]  Ram M. Narayanan,et al.  Compressive radar imaging using white stochastic waveforms , 2010, 2010 International Waveform Diversity and Design Conference.

[25]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[26]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[27]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Qun Zhao,et al.  Support vector machines for SAR automatic target recognition , 2001 .

[29]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[30]  Dewen Hu,et al.  Noisy manifold learning using neighborhood smoothing embedding , 2008, Pattern Recognit. Lett..

[31]  Athina P. Petropulu,et al.  Step-frequency radar with compressive sampling (SFR-CS) , 2009, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[32]  Gene H. Golub,et al.  Matrix computations , 1983 .

[33]  H. Vincent Poor,et al.  Distributed MIMO radar using compressive sampling , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[34]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[35]  Jayaraman J. Thiagarajan,et al.  Sparse representations for automatic target classification in SAR images , 2010, 2010 4th International Symposium on Communications, Control and Signal Processing (ISCCSP).

[36]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[37]  Dahua Gao,et al.  Radar echo signal detection with sparse representations , 2010, 2010 2nd International Conference on Signal Processing Systems.

[38]  Karthikeyan Natesan Ramamurthy,et al.  SAR target classification using sparse representations and spatial pyramids , 2011, 2011 IEEE RadarCon (RADAR).

[39]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[40]  G. J. Owirka,et al.  Template-based SAR ATR performance using different image enhancement techniques , 1999, Defense, Security, and Sensing.

[41]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[42]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[43]  Rick S. Blum,et al.  MIMO radar: an idea whose time has come , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[44]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[45]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[46]  H. Vincent Poor,et al.  Reduced complexity angle-Doppler-range estimation for MIMO radar that employs compressive sensing , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[47]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[48]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[49]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[50]  Ying Liu,et al.  The application of image registration based on genetic algorithm with real data , 2009, 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar.

[51]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[53]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[54]  Lam H. Nguyen,et al.  A sparsity-driven joint image registration and change detection technique for SAR imagery , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[55]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[56]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.