Aerocapture Systems Analysis for a Titan Mission

Performance projections for aerocapture show a vehicle mass savings of between 40 and 80%, dependent on destination, for an aerocapture vehicle compared to an all-propulsive chemical vehicle. In addition aerocapture is applicable to multiple planetary exploration destinations of interest to NASA. The 2001 NASA In-Space Propulsion Program (ISP) technology prioritization effort identified aerocapture as one of the top three propulsion technologies for solar system exploration missions. An additional finding was that aerocapture needed a better system definition and that supporting technology gaps needed to be identified. Consequently, the ISP program sponsored an aerocapture systems analysis effort that was completed in 2002. The focus of the effort was on aerocapture at Titan with a rigid aeroshell system. Titan was selected as the initial destination for the study due to potential interest in a follow-on mission to Cassini/Huygens. Aerocapture is feasible, and the performance is adequate, for the Titan mission and it can deliver 2.4 times more mass to Titan than an all-propulsive system for the same launch vehicle.

[1]  F. R. Riddell,et al.  Theory of Stagnation Point Heat Transfer in Dissociated Air , 1958 .

[2]  W. Nicolet Advanced methods for calculating radiation transport in ablation-product contaminated boundary layers , 1970 .

[3]  K. Sutton,et al.  A general stagnation-point convective heating equation for arbitrary gas mixtures , 1971 .

[4]  R. C. Ried,et al.  Radiative heating to the Apollo command module: Engineering prediction and flight measurement , 1972 .

[5]  Lewis P. Leibowitz,et al.  Ionizational Nonequilibrium Heating During Outer Planetary Entries , 1976 .

[6]  G. L. Brauer,et al.  Capabilities and applications of the Program to Optimize Simulated Trajectories (POST). Program summary document , 1977 .

[7]  J. C. Harpold,et al.  Shuttle entry guidance , 1978 .

[8]  C. Park Radiation enhancement by nonequilibrium during flight through the Titan atmosphere , 1982 .

[9]  H. C. Yee,et al.  On symmetric and upwind TVD schemes , 1985 .

[10]  J. D. Gamble,et al.  A simplified guidance algorithm for lifting aeroassist orbital transfer vehicles , 1985 .

[11]  G. M. Keating,et al.  The Venus international reference atmosphere , 1986 .

[12]  Chul Park,et al.  Assessment of two-temperature kinetic model for ionizing air , 1987 .

[13]  H. C. Yee,et al.  A class of high resolution explicit and implicit shock-capturing methods , 1989 .

[14]  Chul Park,et al.  A review of reaction rates in high temperature air , 1989 .

[15]  Graham V. Candler,et al.  The solution of the Navier-Stokes equations using Gauss-Seidel line relaxation , 1989 .

[16]  Ellis E. Whiting,et al.  Titan atmospheric composition by hypervelocity shock-layer analysis , 1989 .

[17]  P. Gnoffo An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows , 1990 .

[18]  Determination of the radiative emission of a hypersonic flow simulating the Cassini-Titan atmospheric entry probe environment , 1990 .

[19]  D. Bershader,et al.  Studies of radiative emission from the simulated shock layer of the Huygens probe , 1992 .

[20]  C. Laux,et al.  Optical Diagnostics and Radiative Emission of Air Plasmas , 1993 .

[21]  R. A. Thompson,et al.  The addition of algebraic turbulence modeling to program LAURA , 1993 .

[22]  C. Lin,et al.  Coupled Radiation Effects in Thermochemical Nonequilibrium Shock-Capturing Flowfield Calculations , 1994 .

[23]  Lin Hartung Chambers,et al.  Predicting radiative heat transfer in thermochemical nonequilibrium flow fields. Theory and user's manual for the LORAN code , 1994 .

[24]  Gilles Taquin,et al.  Huygens Probe Radiative Environment , 1995 .

[25]  O. Talagrand,et al.  Numerical simulation of the general circulation of the atmosphere of Titan. , 1995, Icarus.

[26]  C. Justus,et al.  The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99) , 1995 .

[27]  Cheatwood F. McNeil,et al.  User''s Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) , 1996 .

[28]  James O. Arnold,et al.  NEQAIR96,Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User's Manual , 1996 .

[29]  HUYGENS probe aerothermodynamics , 1997 .

[30]  Andrew Wilson Huygens : science, payload and mission , 1997 .

[31]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[32]  G. Candler,et al.  Data-Parallel Line Relaxation Method for the Navier -Stokes Equations , 1998 .

[33]  Craig S. Collier,et al.  Design Optimization Using HyperSizer , 1998 .

[34]  Gerald D. Walberg,et al.  High L/D Mars aerocapture for 2001, 2003 and 2005 mission opportunities , 1998 .

[35]  L. Bryant,et al.  Analytic drag control for precision landing and aerocapture , 1998 .

[36]  Brent R. Cobleigh Development of the X-33 Aerodynamic Uncertainty Model , 1998 .

[37]  W. C. Martin,et al.  Atomic Spectra Database , 1999 .

[38]  Michael E. Tauber,et al.  AEROTHERMODYNAMICS OF THE STARDUST SAMPLE RETURN CAPSULE , 1998 .

[39]  C. G. Justus,et al.  Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide , 2000 .

[40]  John Brophy,et al.  Ion propulsion system design for the Comet Nucleus Sample Return mission , 2000 .

[41]  David H. Lehman,et al.  Results from the Deep Space 1 technology validation mission , 2000 .

[42]  Etienne Perot,et al.  An analytic aerocapture guidance algorithm for the Mars Sample Return Orbiter , 2000 .

[43]  A. Haghighat,et al.  Performance of A 3 MCNP™ for Calculation of 3-D Neutron Flux Distribution in a BWR Core Shroud , 2001 .

[44]  Ramadas K. Prabhu Inviscid Flow Computations of Several Aeroshell Configurations for a '07 Mars Lander , 2001 .

[45]  Glenn A. Hrinda Structures for the 3rd Generation Reusable Concept Vehicle , 2001 .

[46]  Richard A. Thompson,et al.  X-33 Aerodynamic Computations and Comparisons with Wind-Tunnel Data , 2001 .

[47]  C. G. Justus,et al.  Mars-GRAM 2000: A Mars atmospheric model for engineering applications , 2002 .

[48]  Etienne Perot,et al.  Importance of an On-board Estimation of the Density Scale Height for Various Aerocapture Guidance Algorithms , 2002 .

[49]  Michael J. Patterson,et al.  Mission Advantages of NEXT: NASA's Evolutionary Xenon Thruster , 2002 .

[50]  James P. Masciarelli,et al.  AEROCAPTURE GUIDANCE ALGORITHM COMPARISON CAMPAIGN , 2002 .

[51]  Michael J. Patterson,et al.  NEXT: NASA's Evolutionary Xenon Thruster , 2002 .

[52]  Troy Goodson,et al.  Cassini tour redesign for the Huygens mission , 2002 .

[53]  Sanford Gordon,et al.  NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species , 2002 .

[54]  The Seas of Titan , 2003 .

[55]  Brian R. Hollis,et al.  Preliminary Aerothermodynamics of Titan Aerocapture Aeroshell , 2003 .

[56]  C. G. Justus,et al.  Mars Global Reference Atmospheric Model (Mars-GRAM) and Database for Mission Design , 2003 .

[57]  Swales Aerospace,et al.  PLANETARY PROBE MASS ESTIMATION TOOL DEVELOPMENT AND ITS APPLICATION TO TITAN AEROCAPTURE , 2003 .

[58]  Robert Bailey,et al.  Titan aerocapture mission and spacecraft design overview , 2003 .

[59]  Aleta Duvall,et al.  Engineering-Level Model Atmospheres for Titan and Neptune , 2003 .

[60]  M. Noca Next generation ion engines: mission performances , 2003 .

[61]  Glenn A. Hrinda,et al.  STRUCTURAL DESIGN OF THE TITAN AEROCAPTURE MISSION , 2003 .

[62]  Mary Kae Lockwood,et al.  Titan Aerocapture Systems Analysis , 2003 .

[63]  Engineering-level model atmospheres for Titan and Mars , 2003 .

[64]  Michelle M. Munk,et al.  Aerocapture Technology Development Within the NASA In-Space Propulsion Program , 2003 .

[65]  Dinesh K. Prabhu,et al.  An Analysis of the Radiative Heating Environment for Aerocapture at Titan , 2003 .

[66]  Robert Haw,et al.  Approach navigation for a Titan aerocapture orbiter , 2003 .

[67]  Peter A. Gnoffo,et al.  Computational Aerothermodynamics in Aeroassist Applications , 2001 .

[68]  Robert W. Bailey,et al.  Titan Explorer mission trades from the perspective of aerocapture , 2003 .

[69]  Bernard Laub Thermal Protection Concepts and Issues for Aerocapture at Titan , 2003 .

[70]  Robert J. Haw Aerocapture navigation at Neptune , 2003 .

[71]  James P. Masciarelli,et al.  Guidance Algorithms for Aerocapture at Titan , 2003 .

[72]  Richard W. Powell,et al.  Aerocapture Simulation and Performance for the Titan Explorer Mission , 2003 .

[73]  Karl T. Edquist,et al.  Configuration, Aerodynamics, and Stability Analysis for a Neptune Aerocapture Orbiter , 2004 .

[74]  James P. Masciarelli,et al.  Aerocapture Guidance Performance for the Neptune Orbiter , 2004 .

[75]  Robert W. Bailey,et al.  Mission Trades for Aerocapture at Neptune , 2004 .

[76]  Bernard Laub,et al.  TPS Challenges for Neptune Aerocapture , 2004 .

[77]  C. G. Justus,et al.  Mars-GRAM validation with Mars global surveyor data , 2004 .

[78]  James Masciarelli,et al.  Aerocapture Performance Analysis for a Neptune-Triton Exploration Mission , 2004 .

[79]  Chul Park,et al.  Stagnation-Point Radiation for Apollo 4 , 2004 .

[80]  Dinesh K. Prabhu,et al.  Preliminary Convective-Radiative Heating Environments for a Neptune Aerocapture Mission , 2004 .

[81]  Glenn A. Hrinda,et al.  Structural Design for a Neptune Aerocapture Mission , 2004 .

[82]  C. G. Justus,et al.  Atmospheric Models for Aerocapture Systems Studies , 2004 .

[83]  Mary Kae Lockwood,et al.  Neptune Aerocapture Systems Analysis , 2004 .

[84]  Deepak Bose,et al.  Impact of Flowfield-Radiation Coupling on Aeroheating for Titan Aerocapture , 2005 .

[85]  Robert W. Bailey,et al.  Cost-Benefit Analysis of the Aerocapture Mission Set , 2005 .

[86]  C. G. Justus,et al.  Global MGS TES data and Mars-GRAM validation , 2005 .

[87]  Richard W. Powell,et al.  Entry Configurations and Performance Comparisons for the Mars Smart Lander , 2006 .

[88]  Karl T. Edquist,et al.  Aeroheating Environments for a Mars Smart Lander , 2002 .

[89]  The application of general circulation models to the atmospheres of terrestrial-type moons of the giant planets , 2013 .