Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12
暂无分享,去创建一个
Toshihiro Kasuga | Masanobu Nakayama | Kiyoshi Kanamura | Hiromasa Shiiba | Randy Jalem | M. Nakayama | R. Jalem | Yoshihiro Yamamoto | T. Kasuga | H. Munakata | K. Kanamura | Hiromasa Shiiba | Yoshihiro Yamamoto | Hirokazu Munakata
[1] G. Chen,et al. Structure and Ionic-Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm−Lu) , 2006 .
[2] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[3] G. Adachi,et al. Fast Li⊕ Conducting Ceramic Electrolytes , 1996 .
[4] G. Adachi,et al. High Li+ Conducting Ceramics , 1994 .
[5] E. Cussen,et al. A neutron diffraction study of the d0 and d10 lithium garnets Li3Nd3W2O12 and Li5La3Sb2O12 , 2007 .
[6] W. Goddard,et al. The predicted crystal structure of Li4C6O6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods , 2011 .
[7] D. Mazza. Remarks on a ternary phase in the La2O3Me2O5Li2O system (Me=Nb, Ta) , 1988 .
[8] Masayuki Nogami,et al. Multivariate Method-Assisted Ab Initio Study of Olivine-Type LiMXO4 (Main Group M2+–X5+ and M3+–X4+) Compositions as Potential Solid Electrolytes , 2012 .
[9] Hui Xie,et al. Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12 , 2011 .
[10] Alexander Kuhn,et al. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.
[11] Shyue Ping Ong,et al. First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .
[12] J. Perdew,et al. Assessing the performance of recent density functionals for bulk solids , 2009, 0903.4037.
[13] K. Hayashi,et al. Crystal structures of La3Li5M2O12 (M=Nb, Ta) , 1988 .
[14] Fujio Izumi,et al. VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .
[15] Jeremy J. Titman,et al. Switching on fast lithium ion conductivity in garnets : the structure and transport properties of Li3+xNd3Te2-xSbxO12 , 2008 .
[16] Venkataraman Thangadurai,et al. Crystal Structure Revision and Identification of Li+-Ion Migration Pathways in the Garnet-like Li5La3M2O12 (M = Nb, Ta) Oxides , 2004 .
[17] Martin Fisch,et al. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.
[18] Venkataraman Thangadurai,et al. Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .
[19] P. Slater,et al. Synthesis and structural characterisation of the Li ion conducting garnet-related systems, Li6ALa2Nb2O12 (A = Ca, Sr) , 2008 .
[20] Ying Shirley Meng,et al. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.
[21] D. Aurbach. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .
[22] Y. Idemoto,et al. Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 , 2011 .
[23] T. W. S. Yip,et al. A neutron diffraction study of the d{sup 0} and d{sup 10} lithium garnets Li{sub 3}Nd{sub 3}W{sub 2}O{sub 12} and Li{sub 5}La{sub 3}Sb{sub 2}O{sub 12} , 2007 .
[24] Molecular dynamics simulation of ionic conductors: perspectives and limitations , 2011, Journal of molecular modeling.
[25] Venkataraman Thangadurai,et al. Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .
[26] M. Nakayama,et al. First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure. , 2012, Physical chemistry chemical physics : PCCP.
[27] Ming Xu,et al. Mechanisms of Li + transport in garnet-type cubic Li 3+x La 3 M 2 O 12 (M = Te, Nb, Zr) , 2012 .
[28] Wang,et al. Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.
[29] E. Cussen. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. , 2006, Chemical communications.
[30] John R. Owen,et al. Rechargeable lithium batteries , 1997 .
[31] A. West,et al. Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .
[32] B. Xu,et al. Factors affecting Li mobility in spinel LiMn2O4—A first-principles study by GGA and GGA+U methods , 2010 .
[33] G. Scuseria,et al. Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.
[34] Mark D. Smith,et al. Crystal growth of a series of lithium garnets Ln(3)Li(5)Ta(2)O(12) (Ln=La, Pr, Nd): Structural properties, Alexandrite effect and unusual ionic conductivity , 2009 .
[35] Anubhav Jain,et al. Recharging lithium battery research with first-principles methods , 2011 .
[36] Stefan Adams,et al. Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25) , 2012 .
[37] O. Ruff,et al. Die Chemie der hohen Temperaturen , 1933 .
[38] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[39] Yusheng Zhao,et al. Experimental visualization of lithium conduction pathways in garnet-type , 2012 .
[40] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods , 1984 .
[41] Linda F. Nazar,et al. Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .
[42] Norihito Kijima,et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure , 2009 .
[43] E. Cussen,et al. Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3−xTa2O12 (0 < x ≤ 1.6) , 2007 .
[44] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[45] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.