Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12

The garnet-type Li7La3Zr2O12 (LLZO) belonging to cubic symmetry (space group Ia3d) is considered as one of the most promising solid electrolyte materials for all-solid state lithium ion batteries. In this study, the diffusion coefficient and site occupancy of Li ions within the 3D network structure of the cubic LLZO framework have been investigated using ab initio molecular dynamics calculations. The bulk conductivity at 300 K is estimated to be about 1.06 × 10–4 S cm–1 with an energy barrier of 0.331 eV, in reasonable agreement with experimental results. The complex mechanism for self-diffusion of Li ions can be viewed as a concerted migration governed by two crucial features: (i) the restriction imposed for occupied site-to-site interatomic separation, and (ii) the unstable residence of Li ion at the 24d site, which can serve as the trigger for ion mobility and reconfiguration of surrounding Li neighbors to accommodate the initiated movement. Evidence for Li ordering is also found at low temperature fo...

[1]  G. Chen,et al.  Structure and Ionic-Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm−Lu) , 2006 .

[2]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[3]  G. Adachi,et al.  Fast Li⊕ Conducting Ceramic Electrolytes , 1996 .

[4]  G. Adachi,et al.  High Li+ Conducting Ceramics , 1994 .

[5]  E. Cussen,et al.  A neutron diffraction study of the d0 and d10 lithium garnets Li3Nd3W2O12 and Li5La3Sb2O12 , 2007 .

[6]  W. Goddard,et al.  The predicted crystal structure of Li4C6O6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods , 2011 .

[7]  D. Mazza Remarks on a ternary phase in the La2O3Me2O5Li2O system (Me=Nb, Ta) , 1988 .

[8]  Masayuki Nogami,et al.  Multivariate Method-Assisted Ab Initio Study of Olivine-Type LiMXO4 (Main Group M2+–X5+ and M3+–X4+) Compositions as Potential Solid Electrolytes , 2012 .

[9]  Hui Xie,et al.  Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12 , 2011 .

[10]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[11]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[12]  J. Perdew,et al.  Assessing the performance of recent density functionals for bulk solids , 2009, 0903.4037.

[13]  K. Hayashi,et al.  Crystal structures of La3Li5M2O12 (M=Nb, Ta) , 1988 .

[14]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[15]  Jeremy J. Titman,et al.  Switching on fast lithium ion conductivity in garnets : the structure and transport properties of Li3+xNd3Te2-xSbxO12 , 2008 .

[16]  Venkataraman Thangadurai,et al.  Crystal Structure Revision and Identification of Li+-Ion Migration Pathways in the Garnet-like Li5La3M2O12 (M = Nb, Ta) Oxides , 2004 .

[17]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[18]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[19]  P. Slater,et al.  Synthesis and structural characterisation of the Li ion conducting garnet-related systems, Li6ALa2Nb2O12 (A = Ca, Sr) , 2008 .

[20]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[21]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[22]  Y. Idemoto,et al.  Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 , 2011 .

[23]  T. W. S. Yip,et al.  A neutron diffraction study of the d{sup 0} and d{sup 10} lithium garnets Li{sub 3}Nd{sub 3}W{sub 2}O{sub 12} and Li{sub 5}La{sub 3}Sb{sub 2}O{sub 12} , 2007 .

[24]  Molecular dynamics simulation of ionic conductors: perspectives and limitations , 2011, Journal of molecular modeling.

[25]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[26]  M. Nakayama,et al.  First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure. , 2012, Physical chemistry chemical physics : PCCP.

[27]  Ming Xu,et al.  Mechanisms of Li + transport in garnet-type cubic Li 3+x La 3 M 2 O 12 (M = Te, Nb, Zr) , 2012 .

[28]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[29]  E. Cussen The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. , 2006, Chemical communications.

[30]  John R. Owen,et al.  Rechargeable lithium batteries , 1997 .

[31]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[32]  B. Xu,et al.  Factors affecting Li mobility in spinel LiMn2O4—A first-principles study by GGA and GGA+U methods , 2010 .

[33]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[34]  Mark D. Smith,et al.  Crystal growth of a series of lithium garnets Ln(3)Li(5)Ta(2)O(12) (Ln=La, Pr, Nd): Structural properties, Alexandrite effect and unusual ionic conductivity , 2009 .

[35]  Anubhav Jain,et al.  Recharging lithium battery research with first-principles methods , 2011 .

[36]  Stefan Adams,et al.  Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25) , 2012 .

[37]  O. Ruff,et al.  Die Chemie der hohen Temperaturen , 1933 .

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  Yusheng Zhao,et al.  Experimental visualization of lithium conduction pathways in garnet-type , 2012 .

[40]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[41]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[42]  Norihito Kijima,et al.  Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure , 2009 .

[43]  E. Cussen,et al.  Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3−xTa2O12 (0 < x ≤ 1.6) , 2007 .

[44]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[45]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.