A Note on One Weight and Two Weight Projective $\mathbb {Z}_{4}$ -Codes
暂无分享,去创建一个
[1] Jay A. Wood. The Structure of Linear Codes of Constant Weight , 2001, Electron. Notes Discret. Math..
[2] Yu Wang,et al. Optimal binary codes from one-lee weight codes and two-lee weight projective codes over ℤ4 , 2014, J. Syst. Sci. Complex..
[3] Shi,et al. Optimal p-ary codes from one-weight linear codes over Z_p^m , 2013 .
[4] Min-Shiang Shia,et al. A class of optimal pary codes from one-weight codes over F p 1⁄2 , 2013 .
[5] Irfan Siap,et al. ONE-HOMOGENEOUS WEIGHT CODES OVER FINITE CHAIN RINGS , 2015 .
[6] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[7] Steven T. Dougherty,et al. One weight Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_4$$\end{document} additive cod , 2015, Applicable Algebra in Engineering, Communication and Computing.
[8] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[9] Patrick Solé,et al. Optimal p-ary codes from one-weight and two-weight codes over $\mathbb{F}_p + v\mathbb{F}_p^* $ , 2015, J. Syst. Sci. Complex..
[10] Shanlin Yang,et al. A class of optimal p-ary codes from one-weight codes over Fp[u]/〈um〉 , 2013, J. Frankl. Inst..
[11] C. Carlet. One-weight Z4-linear Codes , 2000 .
[12] Minjia Shi,et al. Construction of two-Lee weight codes over , 2016, Int. J. Comput. Math..
[13] Steven T. Dougherty,et al. One weight ℤ2ℤ4 additive codes , 2016, Appl. Algebra Eng. Commun. Comput..