A Note on One Weight and Two Weight Projective $\mathbb {Z}_{4}$ -Codes

In this paper, we solve the open problems raised in <xref ref-type="bibr" rid="ref8">[8]</xref> and present some examples to illustrate the obtained results. Moreover, we work out the diophantine problem by Shi and Wang and then give the sufficient conditions for the nonexistence of two-Lee weight projective codes over <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula> with type <inline-formula> <tex-math notation="LaTeX">$4^{k_{1}}2^{k_{2}}$ </tex-math></inline-formula>.

[1]  Jay A. Wood The Structure of Linear Codes of Constant Weight , 2001, Electron. Notes Discret. Math..

[2]  Yu Wang,et al.  Optimal binary codes from one-lee weight codes and two-lee weight projective codes over ℤ4 , 2014, J. Syst. Sci. Complex..

[3]  Shi,et al.  Optimal p-ary codes from one-weight linear codes over Z_p^m , 2013 .

[4]  Min-Shiang Shia,et al.  A class of optimal pary codes from one-weight codes over F p 1⁄2 , 2013 .

[5]  Irfan Siap,et al.  ONE-HOMOGENEOUS WEIGHT CODES OVER FINITE CHAIN RINGS , 2015 .

[6]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[7]  Steven T. Dougherty,et al.  One weight Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_4$$\end{document} additive cod , 2015, Applicable Algebra in Engineering, Communication and Computing.

[8]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[9]  Patrick Solé,et al.  Optimal p-ary codes from one-weight and two-weight codes over $\mathbb{F}_p + v\mathbb{F}_p^* $ , 2015, J. Syst. Sci. Complex..

[10]  Shanlin Yang,et al.  A class of optimal p-ary codes from one-weight codes over Fp[u]/〈um〉 , 2013, J. Frankl. Inst..

[11]  C. Carlet One-weight Z4-linear Codes , 2000 .

[12]  Minjia Shi,et al.  Construction of two-Lee weight codes over , 2016, Int. J. Comput. Math..

[13]  Steven T. Dougherty,et al.  One weight ℤ2ℤ4 additive codes , 2016, Appl. Algebra Eng. Commun. Comput..