A stable compound of helium and sodium at high pressure.

Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.

[1]  J. Weinstein,et al.  Spectroscopic detection of the LiHe molecule. , 2013, Physical review letters.

[2]  Mao,et al.  Equation of state and phase diagram of solid 4He from single-crystal x-ray diffraction over a large P-T domain. , 1993, Physical review letters.

[3]  J. L. Dye,et al.  Electrons as Anions , 2003, Science.

[4]  A. Oganov,et al.  Stability of xenon oxides at high pressures. , 2012, Nature chemistry.

[5]  N. Ashcroft,et al.  Interstitial electronic localization. , 2008, Physical review letters.

[6]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[7]  Y. Akahama,et al.  Pressure calibration of diamond anvil Raman gauge to 310GPa , 2006 .

[8]  Artem R. Oganov,et al.  Modern methods of crystal structure prediction , 2011 .

[9]  Y. Akahama,et al.  Pressure calibration of diamond anvil Raman gauge to 410 GPa , 2010 .

[10]  Georg Kresse,et al.  Self-Consistent $GW$ calculations for semiconductors and insulators , 2018 .

[11]  F. Gorelli,et al.  Optical and electronic properties of dense sodium , 2011 .

[12]  K. Syassen,et al.  Sodium under pressure: bcc to fcc structural transition and pressure-volume relation to 100 GPa , 2002 .

[13]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[14]  M. Malinowski,et al.  X‐ray diffraction investigations of CaF2 at high pressure , 1992 .

[15]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[16]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[17]  H. Mao,et al.  Melting of dense sodium. , 2005, Physical review letters.

[18]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[19]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[20]  Roald Hoffmann,et al.  High-pressure electrides: the chemical nature of interstitial quasiatoms. , 2015, Journal of the American Chemical Society.

[21]  P. Schwerdtfeger,et al.  Xenon Suboxides Stable under Pressure. , 2014, The journal of physical chemistry letters.

[22]  P. Loubeyre,et al.  High pressure measurements of the He-Ne binary phase diagram at 296 K: Evidence for the stability of a stoichiometric Ne(He)2 solid. , 1993, Physical review letters.

[23]  J. W. Hiby Massenspektrographische Untersuchungen an Wasserstoff‐ und Heliumkanalstrahlen (H3+, H2−, HeH+, HeD+, He−) , 1939 .

[24]  A. Vegas,et al.  Towards a generalized vision of oxides: disclosing the role of cations and anions in determining unit-cell dimensions , 2010, Acta crystallographica. Section B, Structural science.

[25]  R. Bader Atoms in molecules , 1990 .

[26]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[27]  M. W. Wong Prediction of a Metastable Helium Compound: HHeF , 2000 .

[28]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[29]  D. Stevenson Metallic helium in massive planets , 2008, Proceedings of the National Academy of Sciences.

[30]  M. Mezouar,et al.  Structural Diversity of Sodium , 2008, Science.

[31]  W. C. Lineberger,et al.  Binding energies in atomic negative ions , 1975 .

[32]  A. Oganov,et al.  Crystal Structure Prediction Using Evolutionary Approach , 2010 .

[33]  James E. Huheey,et al.  Inorganic chemistry; principles of structure and reactivity , 1972 .

[34]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[35]  Roald Hoffmann,et al.  High pressure electrides: a predictive chemical and physical theory. , 2014, Accounts of chemical research.

[36]  P. Luger,et al.  MolIso– a program for colour‐mapped iso‐surfaces , 2006 .

[37]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[38]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[39]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[40]  W. C. Lineberger,et al.  Binding Energies in Atomic Negative Ions : II , 2022 .

[41]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[42]  Y. Akahama,et al.  High-pressure Raman spectroscopy of diamond anvils to 250GPa: Method for pressure determination in the multimegabar pressure range , 2004 .

[43]  J. L. Dye Electrides: early examples of quantum confinement. , 2009, Accounts of chemical research.

[44]  NCImilano: an electron‐density‐based code for the study of noncovalent interactions , 2013 .

[45]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[46]  Wenge Yang,et al.  Pressure-induced bonding and compound formation in xenon-hydrogen solids. , 2010, Nature chemistry.

[47]  D. Klug,et al.  Stable structures of He and H 2 O at high pressure , 2015 .

[48]  D. Ceperley,et al.  The Properties of Hydrogen and Helium Under Extreme Conditions , 2011 .

[49]  Mario Valle,et al.  Transparent dense sodium , 2009, Nature.

[50]  Thomas Bredow,et al.  Consistent Gaussian basis sets of triple‐zeta valence with polarization quality for solid‐state calculations , 2013, J. Comput. Chem..

[51]  Wojciech Grochala,et al.  On Chemical Bonding Between Helium and Oxygen , 2009 .

[52]  G. Kresse,et al.  Anionic chemistry of noble gases: formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure. , 2015, Journal of the American Chemical Society.

[53]  Vijayakumar,et al.  High-pressure x-ray diffraction on potassium and rubidium up to 50 GPa. , 1994, Physical review. B, Condensed matter.

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  J. R. Schmidt,et al.  Generalization of Natural Bond Orbital Analysis to Periodic Systems: Applications to Solids and Surfaces via Plane-Wave Density Functional Theory. , 2012, Journal of chemical theory and computation.

[56]  G. Mukherjee,et al.  High-pressure melting curve of helium and neon: Deviations from corresponding states theory , 2010 .

[57]  V. Saunders,et al.  Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea , 1994 .

[58]  Alexander I Boldyrev,et al.  Solid state adaptive natural density partitioning: a tool for deciphering multi-center bonding in periodic systems. , 2013, Physical chemistry chemical physics : PCCP.

[59]  Artem R. Oganov,et al.  Unexpected Stable Stoichiometries of Sodium Chlorides , 2012, Science.