Rotation-Invariant and Scale-Invariant Steerable Pyramid Decomposition for Texture Image Retrieval

This paper proposes a new rotation-invariant and scale-invariant representation for texture image retrieval based on steerable pyramid decomposition. By calculating the mean and standard deviation of decomposed image subbands, the texture feature vectors are extracted. To obtain rotation or scale invariance, the feature elements are aligned by considering either the dominant orientation or dominant scale of the input textures. Experiments were conducted on the Brodatz database aiming to compare our approach to the conventional steerable pyramid decomposition, and a proposal for texture characterization based on Gabor wavelets with regard to their retrieval effectiveness. Results demonstrate the superiority of the proposed method in rotated and scaled image datasets.

[1]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Arivazhagan Selvaraj,et al.  Texture classification using Gabor wavelets based rotation invariant features , 2006, Pattern Recognit. Lett..

[3]  Stephen Lin,et al.  View-dependent displacement mapping , 2003, ACM Trans. Graph..

[4]  Jean-Michel Dischler,et al.  Real-time high-quality View-Dependent Texture Mapping using per-pixel visibility , 2005, GRAPHITE.

[5]  Jian Fan,et al.  Texture Classification by Wavelet Packet Signatures , 1993, MVA.

[6]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..

[7]  S. K. Dai,et al.  Texture image retrieval and image segmentation using composite sub-band gradient vectors , 2006, J. Vis. Commun. Image Represent..

[8]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[9]  Kai-Kuang Ma,et al.  Rotation-invariant and scale-invariant Gabor features for texture image retrieval , 2007, Image Vis. Comput..

[10]  Pietro Perona,et al.  Rotation invariant texture recognition using a steerable pyramid , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[11]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[12]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[13]  Prabir Kumar Biswas,et al.  Cosine-modulated wavelet based texture features for content-based image retrieval , 2004, Pattern Recognit. Lett..

[14]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[16]  Robert L. Cook,et al.  Shade trees , 1984, SIGGRAPH.

[17]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[18]  Prabir Kumar Biswas,et al.  Rotation invariant texture classification using even symmetric Gabor filters , 2003, Pattern Recognit. Lett..

[19]  Manuel Menezes de Oliveira Neto,et al.  Relief texture mapping , 2000, SIGGRAPH.

[20]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..