A para- to meta-isomerization of phenols.

[1]  L. Ball,et al.  meta-Selective C–H arylation of phenols via regiodiversion of electrophilic aromatic substitution , 2022, Nature Chemistry.

[2]  Junichiro Yamaguchi,et al.  Aryl Dance Reaction of Arylbenzoheteroles. , 2022, Organic letters.

[3]  J. T. Njardarson,et al.  Phenols in Pharmaceuticals: Analysis of a Recurring Motif. , 2022, Journal of medicinal chemistry.

[4]  U. Krasuska,et al.  Toxicity of meta-Tyrosine , 2021, Plants.

[5]  K. Yeung,et al.  A tautomeric ligand enables directed C‒H hydroxylation with molecular oxygen , 2021, Science.

[6]  Chao‐Jun Li,et al.  Transformations of Less-Activated Phenols and Phenol Derivatives via C-O Cleavage. , 2020, Chemical reviews.

[7]  Junichiro Yamaguchi,et al.  Ester dance reaction on the aromatic ring , 2019, Science Advances.

[8]  E. Sherer,et al.  Analysis of Benzenoid Substitution Patterns in Small Molecule Active Pharmaceutical Ingredients. , 2019, Journal of medicinal chemistry.

[9]  M. Francis,et al.  Tyrosinase-Mediated Oxidative Coupling of Tyrosine Tags on Peptides and Proteins. , 2019, Journal of the American Chemical Society.

[10]  F. Ye,et al.  Site‐Selective C−H Oxygenation via Aryl Sulfonium Salts , 2019, Angewandte Chemie.

[11]  Zheng Huang,et al.  Phenol-Directed C–H Functionalization , 2018, ACS Catalysis.

[12]  K. Esguerra,et al.  Selectivity in the Aerobic Dearomatization of Phenols: Total Synthesis of Dehydronornuciferine by Chemo- and Regioselective Oxidation. , 2018, Angewandte Chemie.

[13]  K. Esguerra,et al.  Synthesis of ortho-Azophenols by Formal Dehydrogenative Coupling of Phenols and Hydrazines or Hydrazides. , 2017, Chemistry.

[14]  K. Esguerra,et al.  A Bioinspired Catalytic Aerobic Functionalization of Phenols: Regioselective Construction of Aromatic C–N and C–O Bonds , 2017 .

[15]  K. Esguerra,et al.  Unified Synthesis of 1,2-Oxy-aminoarenes via a Bio-inspired Phenol-Amine Coupling , 2017 .

[16]  K. Maloney,et al.  Synthesis of Complex Phenols Enabled by a Rationally Designed Hydroxide Surrogate. , 2017, Angewandte Chemie.

[17]  L. Ng,et al.  Free‐Radical‐Scavenging, Antityrosinase, and Cellular Melanogenesis Inhibitory Activities of Synthetic Isoflavones , 2015, Chemistry & biodiversity.

[18]  K. Esguerra,et al.  A biomimetic catalytic aerobic functionalization of phenols. , 2014, Angewandte Chemie.

[19]  K. Houk,et al.  Metal-free oxidation of aromatic carbon–hydrogen bonds through a reverse-rebound mechanism , 2013, Nature.

[20]  S. Stahl,et al.  Aerobic oxidative Heck/dehydrogenation reactions of cyclohexenones: efficient access to meta-substituted phenols. , 2013, Angewandte Chemie.

[21]  L. Pardo,et al.  Crystal structure of the μ-opioid receptor bound to a morphinan antagonist , 2012, Nature.

[22]  S. Stahl,et al.  Palladium-Catalyzed Aerobic Dehydrogenation of Substituted Cyclohexanones to Phenols , 2011, Science.

[23]  A. J. Ross,et al.  Much improved conditions for the Negishi cross-coupling of iodoalanine derived zinc reagents with aryl halides. , 2010, Journal of Organic Chemistry.

[24]  C. Shao,et al.  Highly efficient synthesis of phenols by copper-catalyzed oxidative hydroxylation of arylboronic acids at room temperature in water. , 2010, Organic letters.

[25]  S. Quideau,et al.  Hypervalent iodine-mediated phenol dearomatization in natural product synthesis , 2010 .

[26]  M. Gross,et al.  Balance of beneficial and deleterious health effects of quinones: a case study of the chemical properties of genistein and estrone quinones. , 2009, Journal of the American Chemical Society.

[27]  M. Foti Antioxidant properties of phenols , 2007, The Journal of pharmacy and pharmacology.

[28]  J. Meinwald,et al.  Grass roots chemistry: meta-Tyrosine, an herbicidal nonprotein amino acid , 2007, Proceedings of the National Academy of Sciences.

[29]  Milton R. Smith,et al.  C-H activation/borylation/oxidation: a one-pot unified route to meta-substituted phenols bearing ortho-/para-directing groups. , 2003, Journal of the American Chemical Society.

[30]  T. Pettus,et al.  Regioselective oxidation of phenols to o-quinones with o-iodoxybenzoic acid (IBX). , 2002, Organic letters.

[31]  G A Petsko,et al.  Aromatic-aromatic interaction: a mechanism of protein structure stabilization. , 1985, Science.

[32]  A. P. Bolton,et al.  Isomerization of tert-butylphenols using zeolite catalysts , 1968 .

[33]  M. Cava,et al.  Condensed Cyclobutane Aromatic Systems. V. The Synthesis of Some α-Diazoindanones: Ring Contraction in the Indane Series , 1958 .

[34]  J. E. Taylor,et al.  The Chemistry of Diazo Compounds. II. Evidence for a Free Radical Chain Mechanism in the Reduction of Diazonium Salts by Hypophosphorous Acid1,2 , 1950 .

[35]  J. Paolini,et al.  Ezetimibe , 2005, Clinical pharmacokinetics.

[36]  P. Seybold,et al.  Substituent effects on the physical properties and pKa of phenol , 2001 .

[37]  C. A. Ramsden,et al.  Oxidative cyclisation of N,N-dialkylcatechol amines to heterocyclic betaines via o-quinones: synthetic, pulse radiolytic and enzyme studies , 2000 .

[38]  C. A. Ramsden,et al.  Novel heterocyclic betaines relevant to the mechanism of tyrosinase-catalysed oxidation of phenols , 1998 .