Exploring the Function of Neural Oscillations in Early Sensory Systems

Neuronal oscillations appear throughout the nervous system, in structures as diverse as the cerebral cortex, hippocampus, subcortical nuclei and sense organs. Whether neural rhythms contribute to normal function, are merely epiphenomena, or even interfere with physiological processing are topics of vigorous debate. Sensory pathways are ideal for investigation of oscillatory activity because their inputs can be defined. Thus, we will focus on sensory systems as we ask how neural oscillations arise and how they might encode information about the stimulus. We will highlight recent work in the early visual pathway that shows how oscillations can multiplex different types of signals to increase the amount of information that spike trains encode and transmit. Last, we will describe oscillation-based models of visual processing and explore how they might guide further research.

[1]  A. Thiele,et al.  Neuronal synchrony does not correlate with motion coherence in cortical area MT , 2003, Nature.

[2]  M. Ursino,et al.  Object segmentation and recovery via neural oscillators implementing the similarity and prior knowledge gestalt rules. , 2006, Bio Systems.

[3]  Ovidiu F. Jurjuţ,et al.  The oscillation score: an efficient method for estimating oscillation strength in neuronal activity. , 2008, Journal of neurophysiology.

[4]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[5]  N. Logothetis,et al.  Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex , 2008, Current Biology.

[6]  W. Freeman,et al.  Frequency analysis of olfactory system EEG in cat, rabbit, and rat. , 1980, Electroencephalography and clinical neurophysiology.

[7]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[8]  W. Freeman,et al.  Relation of olfactory EEG to behavior: time series analysis. , 1986, Behavioral neuroscience.

[9]  O.-J. Grüsser,et al.  Die Informationsübertragung im afferenten visuellen system , 1962, Kybernetik.

[10]  A. Hudspeth,et al.  Essential nonlinearities in hearing. , 2000, Physical review letters.

[11]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[12]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[13]  K. Hoffmann,et al.  Synchronization of Neuronal Activity during Stimulus Expectation in a Direction Discrimination Task , 1997, The Journal of Neuroscience.

[14]  Mark Berman Inhomogeneous and modulated gamma processes , 1981 .

[15]  Ehud Ahissar,et al.  Figuring Space by Time , 2001, Neuron.

[16]  M. Young,et al.  On oscillating neuronal responses in the visual cortex of the monkey. , 1992, Journal of neurophysiology.

[17]  Gustavo Deco,et al.  Oscillations, Phase-of-Firing Coding, and Spike Timing-Dependent Plasticity: An Efficient Learning Scheme , 2009, The Journal of Neuroscience.

[18]  E Ahissar,et al.  Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[19]  E. Adrian,et al.  The impulses produced by sensory nerve endings , 1926, The Journal of physiology.

[20]  M. Verzeano,et al.  Periodic activity in the visual system of the cat. , 1967, Vision research.

[21]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  T. Sejnowski,et al.  Network Oscillations: Emerging Computational Principles , 2006, The Journal of Neuroscience.

[23]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[24]  Nicolas Brunel,et al.  Sensory neural codes using multiplexed temporal scales , 2010, Trends in Neurosciences.

[25]  G. Mogenson,et al.  PHOTICALLY AND ELECTRICALLY ELICITED RESPONSES IN THE CENTRAL VISUAL SYSTEM OF THE SQUIRREL MONKEY. , 1964, Experimental neurology.

[26]  W. McCulloch,et al.  The limiting information capacity of a neuronal link , 1952 .

[27]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , 2022 .

[28]  W D Heiss,et al.  [Multimodal interval histograms of the continuous activity of retinal cat neurons]. , 1966, Kybernetik.

[29]  Todd Miller,et al.  matplotlib – A Portable Python Plotting Package , 2006 .

[30]  Melanie R. Bernard,et al.  Abbreviated Title: , 2017 .

[31]  W.-D. Heiss,et al.  Multimodale Intervallhistogramme der Daueraktivität von retinalen Neuronen der Katze , 1966, Kybernetik.

[32]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[33]  M. Tachibana,et al.  Light-evoked oscillatory discharges in retinal ganglion cells are generated by rhythmic synaptic inputs. , 2004, Journal of neurophysiology.

[34]  B. Granger Ipython: a System for Interactive Scientific Computing Python: an Open and General- Purpose Environment , 2007 .

[35]  Rajesh P. N. Rao,et al.  Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. , 2001, Journal of neurophysiology.

[36]  Maria V. Sanchez-Vives,et al.  Influence of low and high frequency inputs on spike timing in visual cortical neurons. , 1997, Cerebral cortex.

[37]  Gilles Laurent,et al.  Olfactory network dynamics and the coding of multidimensional signals , 2002, Nature Reviews Neuroscience.

[38]  Zoltan Nadasdy,et al.  Information Encoding and Reconstruction from the Phase of Action Potentials , 2009, Front. Syst. Neurosci..

[39]  DeLiang Wang,et al.  Image Segmentation Based on Oscillatory Correlation , 1997, Neural Computation.

[40]  Markus Bongard,et al.  Retinal ganglion cell synchronization by fixational eye movements improves feature estimation , 2002, Nature Neuroscience.

[41]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.

[42]  Pierre Baldi,et al.  Computing with Arrays of Coupled Oscillators: An Application to Preattentive Texture Discrimination , 1990, Neural Computation.

[43]  G Tononi,et al.  Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[45]  Michael Brecht Good vibrations. Focus on "texture signals in whisker vibrations". , 2006, Journal of neurophysiology.

[46]  Friedrich T. Sommer,et al.  Information transmission in oscillatory neural activity , 2008, Biological Cybernetics.

[47]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[48]  Marcelo A. Montemurro,et al.  Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns , 2009, Neuron.

[49]  R. Reid,et al.  Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus , 1998, Nature.

[50]  H. Barlow,et al.  MAINTAINED ACTIVITY IN THE CAT'S RETINA IN LIGHT AND DARKNESS , 1957, The Journal of general physiology.

[51]  Peter König,et al.  Binding by temporal structure in multiple feature domains of an oscillatory neuronal network , 1994, Biological Cybernetics.

[52]  W. Heiss,et al.  [Distribution of impulse of continuous activity of single optic nerve fibers. Effects of light, ischemia, strychnine and barbiturate]. , 1965, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[53]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[54]  Gerald Langner,et al.  Periodicity coding in the auditory system , 1992, Hearing Research.

[55]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[56]  M. Munk,et al.  High-Frequency Oscillations (20 to 120 Hz) and Their Role in Visual Processing , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[57]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[58]  Xin Wang,et al.  Retinal Oscillations Carry Visual Information to Cortex , 2008, Front. Syst. Neurosci..

[59]  Roy D. Patterson,et al.  Auditory images:How complex sounds are represented in the auditory system , 2000 .

[60]  A Kawana,et al.  Short- and long-range synchronous activities in dimming detectors of the frog retina , 1999, Visual Neuroscience.

[61]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[62]  Sompolinsky,et al.  Cooperative dynamics in visual processing. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[63]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[64]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Alexander S. Ecker,et al.  Feature Selectivity of the Gamma-Band of the Local Field Potential in Primate Primary Visual Cortex , 2008, Front. Neurosci..

[66]  Michele Rucci,et al.  Fixational eye movements, natural image statistics, and fine spatial vision , 2008, Network.

[67]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[68]  G. Laurent,et al.  Multiplexing using synchrony in the zebrafish olfactory bulb , 2004, Nature Neuroscience.

[69]  Nicolas Brunel,et al.  Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons , 2008, PLoS Comput. Biol..

[70]  W. M. Roberts,et al.  Linear and nonlinear processing in hair cells , 2008, Journal of Experimental Biology.

[71]  Christoph Kayser,et al.  Stimulus locking and feature selectivity prevail in complementary frequency ranges of V1 local field potentials , 2004, The European journal of neuroscience.

[72]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[73]  M. Antonaccio,et al.  IN ANESTHETIZED CAT , 1978 .

[74]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[75]  Joachim M. Buhmann,et al.  Sensory segmentation with coupled neural oscillators , 1992, Biological Cybernetics.

[76]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[77]  J. Licklider,et al.  A duplex theory of pitch perception , 1951, Experientia.

[78]  M. Tachibana,et al.  Synchronized retinal oscillations encode essential information for escape behavior in frogs , 2005, Nature Neuroscience.