A new numerical method for variable order fractional functional differential equations

Abstract In this letter, a high order numerical scheme is proposed for solving variable order fractional functional differential equations. Firstly, the problem is approximated by an integer order functional differential equation. The integer order differential equation is then solved by the reproducing kernel method. Numerical examples are given to demonstrate the theoretical analysis and verify the efficiency of the proposed method.

[1]  Dominik Sierociuk,et al.  Derivation, interpretation, and analog modelling of fractional variable order derivative definition , 2013, 1304.5072.

[2]  Fawang Liu,et al.  A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model , 2013, Comput. Math. Appl..

[3]  Leevan Ling,et al.  Method of approximate particular solutions for constant- and variable-order fractional diffusion models , 2015 .

[4]  Xiuying Li,et al.  Approximate analytical solutions of nonlocal fractional boundary value problems , 2015 .

[5]  Minggen Cui,et al.  Nonlinear Numerical Analysis in Reproducing Kernel Space , 2009 .

[6]  Yubin Yan,et al.  Error estimates of a high order numerical method for solving linear fractional differential equations , 2017 .

[7]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[8]  Esmail Babolian,et al.  Some error estimates for solving Volterra integral equations by using the reproducing kernel method , 2015, J. Comput. Appl. Math..

[9]  F. Z. Geng,et al.  Piecewise shooting reproducing kernel method for linear singularly perturbed boundary value problems , 2016, Appl. Math. Lett..

[10]  X. Y. Li,et al.  A numerical method for solving distributed order diffusion equations , 2016, Appl. Math. Lett..

[11]  Boying Wu,et al.  A numerical technique for variable fractional functional boundary value problems , 2015, Appl. Math. Lett..

[12]  Min Qi,et al.  A reproducing kernel method for solving nonlocal fractional boundary value problems with uncertainty , 2017, Soft Comput..

[13]  M. Ghasemi,et al.  Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space , 2015, Appl. Math. Comput..

[14]  S. Li,et al.  A numerical method for singularly perturbed turning point problems with an interior layer , 2014, J. Comput. Appl. Math..

[15]  Fawang Liu,et al.  Numerical approximation for a variable-order nonlinear reaction–subdiffusion equation , 2013, Numerical Algorithms.

[16]  M. Zaky,et al.  Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation , 2014, Nonlinear Dynamics.

[17]  Jianxiong Cao,et al.  A high order numerical scheme for variable order fractional ordinary differential equation , 2016, Appl. Math. Lett..

[18]  Shaher Momani,et al.  Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method , 2016, Appl. Math. Comput..

[19]  CHANG-MING CHEN,et al.  Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation , 2012, Math. Comput..

[20]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..

[21]  V. V. Skopetskii,et al.  An iterative method for solving boundary-value problems , 1978, Cybernetics.

[22]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[23]  B. Ross,et al.  Integration and differentiation to a variable fractional order , 1993 .

[24]  Stefan Samko,et al.  Fractional integration and differentiation of variable order , 1995 .

[25]  Yingzhen Lin,et al.  Simplified reproducing kernel method for fractional differential equations with delay , 2016, Appl. Math. Lett..

[26]  Abdon Atangana,et al.  On the stability and convergence of the time-fractional variable order telegraph equation , 2015, J. Comput. Phys..

[27]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[28]  Fazhan Geng,et al.  Solving a nonlinear system of second order boundary value problems , 2007 .

[29]  X. Y. Li,et al.  Error estimation for the reproducing kernel method to solve linear boundary value problems , 2013, J. Comput. Appl. Math..

[30]  Fazhan Geng,et al.  Solving singular two-point boundary value problem in reproducing kernel space , 2007 .

[31]  Boying Wu,et al.  A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations , 2017, J. Comput. Appl. Math..

[32]  Stefan Samko,et al.  Fractional integration and differentiation of variable order: an overview , 2012, Nonlinear Dynamics.

[33]  Asad Freihat,et al.  Fitted Reproducing Kernel Method for Solving a Class of Third-Order Periodic Boundary Value Problems , 2016, 1704.04837.

[34]  Fawang Liu,et al.  Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation , 2009, Appl. Math. Comput..

[35]  Xu Yufeng,et al.  A FINITE DIFFERENCE TECHNIQUE FOR SOLVING VARIABLE-ORDER FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS , 2014 .

[36]  George E. Karniadakis,et al.  Fractional spectral collocation methods for linear and nonlinear variable order FPDEs , 2015, J. Comput. Phys..

[37]  Yi-Ming Chen,et al.  Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets , 2015, Appl. Math. Lett..

[38]  F. Z. Geng,et al.  Modified reproducing kernel method for singularly perturbed boundary value problems with a delay , 2015 .

[39]  Fawang Liu,et al.  Numerical techniques for the variable order time fractional diffusion equation , 2012, Appl. Math. Comput..