Hilbert-Space Reduced-Rank Methods For Deep Gaussian Processes

A deep Gaussian process is a hierarchy of Gaussian processes where the process at each level is Gaussian given the process on the next level. In this paper, we recast special deep Gaussian processes as solutions of stochastic partial differential equations (SPDEs). Each of these SPDEs has parameters which are functions of the solutions to other SPDEs. To avoid solving SPDEs explicitly, we transform the SPDEs to finite-dimensional objects by truncating the underlying Hilbert space expansion. We then use a Markov chain Monte Carlo technique designed for function spaces to sample its posterior distribution. For a one-dimensional signal example, we show that the regression can offer discontinuity detection and smoothness constraints, which are competing with each other.

[1]  D. Mackay,et al.  Introduction to Gaussian processes , 1998 .

[2]  Arno Solin,et al.  Hilbert space methods for reduced-rank Gaussian process regression , 2014, Stat. Comput..

[3]  Mario A. Storti,et al.  MPI for Python: Performance improvements and MPI-2 extensions , 2008, J. Parallel Distributed Comput..

[4]  M. Girolami,et al.  Hyperpriors for Matérn fields with applications in Bayesian inversion , 2016, Inverse Problems & Imaging.

[5]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[6]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[7]  Andrew M. Stuart,et al.  How Deep Are Deep Gaussian Processes? , 2017, J. Mach. Learn. Res..

[8]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[9]  Mark J. Schervish,et al.  Nonstationary Covariance Functions for Gaussian Process Regression , 2003, NIPS.

[10]  A. O'Hagan,et al.  Bayesian inference for non‐stationary spatial covariance structure via spatial deformations , 2003 .

[11]  Lassi Roininen,et al.  Elliptic boundary value problems with Gaussian white noise loads , 2016, Stochastic Processes and their Applications.

[12]  Yuxin Chen,et al.  Accelerated Dimension-Independent Adaptive Metropolis , 2015, SIAM J. Sci. Comput..

[13]  Andrew M. Stuart,et al.  Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..

[14]  R. Adler The Geometry of Random Fields , 2009 .

[15]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[16]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[17]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[18]  Kody J. H. Law Proposals which speed up function-space MCMC , 2014, J. Comput. Appl. Math..

[19]  Dorit Hammerling,et al.  A Case Study Competition Among Methods for Analyzing Large Spatial Data , 2017, Journal of Agricultural, Biological and Environmental Statistics.

[20]  Christopher J. Paciorek,et al.  Nonstationary Gaussian Processes for Regression and Spatial Modelling , 2003 .

[21]  Darren J. Wilkinson,et al.  Parallel Bayesian Computation , 2005 .

[22]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[23]  Haavard Rue,et al.  Does non-stationary spatial data always require non-stationary random fields? , 2014 .

[24]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[25]  Carl E. Rasmussen,et al.  Warped Gaussian Processes , 2003, NIPS.