New classes of non-iterative energy corrections to multi-reference coupled-cluster energies

Two new classes of non-iterative corrections to the ground- and excited-state energies obtained in the state-universal multi-reference coupled-cluster (SUMRCC) calculations have been developed using the multi-reference extension of the method of moments of coupled-cluster equations (MMCC) [KOWALSKI, K., and PIECUCH, P., 2001, J. molec. Struct. (THEOCHEM), 547, 191]. In the first class of the configuration interaction (CI) corrected multi-reference MMCC (MRMMCC) approximations, the non-iterative corrections due to triply or triply and quadruply excited clusters are constructed with the help of multi-reference CI (MRCI) calculations employing the same active space as used in the SUMRCC calculations. In the second class of the completely renormalized (CR) SUMRCC methods, which can be viewed as the multi-reference extensions of the single-reference CR-CCSD(T) theory [KOWALSKI, K., and PIECUCH, P., 2000, J. chem. Phys., 113, 18], the non-iterative corrections due to triply excited clusters are constructed with the help of the multi-reference many-body perturbation theory. In both cases, the non-iterative corrections due to higher-order clusters are added to the energies obtained with the SUMRCC method with singles and doubles. It is demonstrated that the newly developed corrections, including the CR-SUMRCC methods, offer considerable improvements in the SUMRCCSD results, reducing, in particular, the large errors in the SUMRCCSD results due to intruders.

[1]  Multireference coupled cluster calculations on CH2 , 1992 .

[2]  P. Piecuch,et al.  The State-Universal Multi-Reference Coupled-Cluster Theory: An Overview of Some Recent Advances , 2002 .

[3]  Peter Pulay,et al.  Consistent generalization of the Møller-Plesset partitioning to open-shell and multiconfigurational SCF reference states in many-body perturbation theory , 1987 .

[4]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[5]  J. Paldus,et al.  Single‐reference CCSD approach employing three‐ and four‐body CAS SCF corrections: A preliminary study of a simple model , 1997 .

[6]  A non-perturbative open-shell theory for ionisation potential and excitation energies using HF ground state as the vacuum , 1979 .

[7]  R. Bartlett,et al.  An efficient way to include connected quadruple contributions into the coupled cluster method , 1998 .

[8]  Josef Paldus,et al.  General-model-space state-universal coupled-cluster theory: Connectivity conditions and explicit equations , 2003 .

[9]  Rodney J. Bartlett,et al.  A Hilbert space multi-reference coupled-cluster study of the H4 model system , 1991 .

[10]  S. Pal,et al.  Use of Cluster Expansion Methods in the Open-Shell Correlation Problem , 1989 .

[11]  Leszek Meissner,et al.  Davidson-type corrections for quasidegenerate states , 1985 .

[12]  Intermediate Hamiltonian Fock-space coupled-cluster method , 1999 .

[13]  P. Piecuch,et al.  The state-universal multi-reference coupled-cluster theory with perturbative description of core-virtual excitations , 2001 .

[14]  Karol Kowalski,et al.  Extension of the method of moments of coupled-cluster equations to a multireference wave operator formalism ☆ , 2001 .

[15]  H. Kümmel,et al.  Degenerate many fermion theory in expS form: (I). General formalism , 1976 .

[16]  Carlos E. Soliverez,et al.  General theory of effective Hamiltonians , 1981 .

[17]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[18]  Approximate account of connected quadruply excited clusters in multi-reference Hilbert space coupled-cluster theory. Application to planar H4 models , 1993 .

[19]  F. Coester,et al.  Bound states of a many-particle system , 1958 .

[20]  R. Bartlett,et al.  A new approach to the problem of noniterative corrections within the coupled-cluster framework , 2001 .

[21]  Werner Kutzelnigg,et al.  Quantum chemistry in Fock space. I. The universal wave and energy operators , 1982 .

[22]  State-selective multi-reference coupled-cluster theory using multi-configuration self-consistent-field orbitals. A model study on H8 , 1994 .

[23]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[24]  Donald C. Comeau,et al.  The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states , 1993 .

[25]  R. Bishop,et al.  Recent Progress in MANY-BODY THEORIES , 1988 .

[26]  Josef Paldus,et al.  Orthogonally spin‐adapted state‐universal coupled‐cluster formalism: Implementation of the complete two‐reference theory including cubic and quartic coupling terms , 1994 .

[27]  B. Roos,et al.  A simple method for the evaluation of the second-order-perturbation energy from external double-excitations with a CASSCF reference wavefunction , 1982 .

[28]  B. Brandow Linked-Cluster Expansions for the Nuclear Many-Body Problem , 1967 .

[29]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[30]  J. Paldus,et al.  Reduced multireference coupled cluster method IV: open-shell systems , 2000 .

[31]  B. A. Hess,et al.  The relativistic Fock-space coupled-cluster method for molecules: CdH and its ions , 1998 .

[32]  Malinowski,et al.  Impact of the choice of model spaces and basis sets on the performance of the valence-universal coupled-cluster method: Energies for Be and C2+ , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  Ludwik Adamowicz,et al.  STATE-SELECTIVE MULTIREFERENCE COUPLED-CLUSTER THEORY EMPLOYING THE SINGLE-REFERENCE FORMALISM : IMPLEMENTATION AND APPLICATION TO THE H8 MODEL SYSTEM , 1994 .

[34]  Karol Kowalski,et al.  Extension of the method of moments of coupled-cluster equations to excited states: The triples and quadruples corrections to the equation-of-motion coupled-cluster singles and doubles energies , 2002 .

[35]  D. Mukherjee The linked-cluster theorem in the open-shell coupled-cluster theory for incomplete model spaces , 1986 .

[36]  P. Piecuch,et al.  Coupled‐Cluster approaches with an approximate account of triply and quadruply excited clusters: Implementation of the orthogonally spin‐adapted CCD + ST(CCD), CCSD + T(CCSD), and ACPQ + ST(ACPQ) formalisms , 1995 .

[37]  P. Piecuch,et al.  A comparison of the renormalized and active-space coupled-cluster methods: Potential energy curves of BH and F2 , 2001 .

[38]  L. Adamowicz,et al.  Use of recursively generated intermediates in state selective multireference coupled‐cluster method: A numerical example , 1995 .

[39]  Michael J. McGuire,et al.  Recent advances in electronic structure theory: Method of moments of coupled-cluster equations and renormalized coupled-cluster approaches , 2002 .

[40]  U. Kaldor,et al.  Many-Body Methods in Quantum Chemistry , 1989 .

[41]  Sourav Pal,et al.  Use of a size-consistent energy functional in many electron theory for closed shells , 1983 .

[42]  D. Yarkony,et al.  Modern Electronic Structure Theory: Part I , 1995 .

[43]  Piecuch,et al.  Application of Hilbert-space coupled-cluster theory to simple (H2)2 model systems. II. Nonplanar models. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[44]  Karol Kowalski,et al.  The active-space equation-of-motion coupled-cluster methods for excited electronic states: The EOMCCSDt approach , 2000 .

[45]  U. Kaldor,et al.  The coupled‐cluster method in high sectors of the Fock space , 1995 .

[46]  Karol Kowalski,et al.  New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. , 2004, The Journal of chemical physics.

[47]  I. Lindgren A Note on the Linked-Diagram and Coupled-Cluster Expansions for Complete and Incomplete Model Spaces , 1985 .

[48]  Piecuch,et al.  Approximate account of connected quadruply excited clusters in single-reference coupled-cluster theory via cluster analysis of the projected unrestricted Hartree-Fock wave function. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[49]  Kimihiko Hirao,et al.  Multireference Møller–Plesset perturbation treatment of potential energy curve of N2 , 1992 .

[50]  P. Piecuch,et al.  Complete set of solutions of the generalized Bloch equation , 2000 .

[51]  Josef Paldus,et al.  N-reference, M-state coupled-cluster method: Merging the state-universal and reduced multireference coupled-cluster theories , 2003 .

[52]  I. Lindgren Hermitian formulation of the coupled-cluster approach , 1991 .

[53]  U. Kaldor,et al.  Diagrammatic many-body perturbation theory for general model spaces , 1979 .

[54]  Karol Kowalski,et al.  Complete set of solutions of multireference coupled-cluster equations: The state-universal formalism , 2000 .

[55]  Karol Kowalski,et al.  The active-space equation-of-motion coupled-cluster methods for excited electronic states: Full EOMCCSDt , 2001 .

[56]  Peter Pulay,et al.  Generalized Mo/ller–Plesset perturbation theory: Second order results for two‐configuration, open‐shell excited singlet, and doublet wave functions , 1989 .

[57]  P. Piecuch,et al.  State‐selective multireference coupled‐cluster theory: In pursuit of property calculation , 1996 .

[58]  Karol Kowalski,et al.  Renormalized CCSD(T) and CCSD(TQ) approaches: Dissociation of the N2 triple bond , 2000 .

[59]  P. Piecuch,et al.  An ab initio determination of 1A1-3B1 energy gap in CH2 using orthogonally spin-adapted state-universal and state-specific coupled-cluster methods , 1994 .

[60]  U. Kaldor The Fock space coupled cluster method: theory and application , 1991 .

[61]  Xiangzhu Li Benchmark study of potential energies and vibrational levels using the reduced multireference coupled cluster method. The HF molecule , 2001 .

[62]  Nevin Horace Oliphant,et al.  A multireference coupled-cluster method using a single-reference formalism. , 1991 .

[63]  H. Weidenmüller,et al.  Perturbation theory for the effective interaction in nuclei , 1973 .

[64]  Werner Kutzelnigg,et al.  Quantum chemistry in Fock space. III. Particle‐hole formalism , 1984 .

[65]  K. Kowalski,et al.  Applicability of valence-universal multireference coupled-cluster theories to quasidegenerate electronic states. I. Models involving at most two-body amplitudes , 1992 .

[66]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[67]  Anna I. Krylov,et al.  Size-consistent wave functions for bond-breaking: the equation-of-motion spin-flip model , 2001 .

[68]  U. Kaldor The open‐shell coupled‐cluster method: Excitation energies and ionization potentials of H2O , 1987 .

[69]  Jeppe Olsen,et al.  The initial implementation and applications of a general active space coupled cluster method , 2000 .

[70]  Anna I Krylov,et al.  Equation-of-motion spin-flip coupled-cluster model with single and double substitutions: Theory and application to cyclobutadiene. , 2004, The Journal of chemical physics.

[71]  U. Kaldor,et al.  Open-shell coupled-cluster theory applied to atomic and molecular systems , 1985 .

[72]  J. Paldus,et al.  Energy- versus amplitude-corrected coupled-cluster approaches. III. Accurate computation of spectroscopic data exemplified on the HF molecule , 2002 .

[73]  P. Piecuch,et al.  Method of moments of coupled-cluster equations: The quasivariational and quadratic approximations , 2003 .

[74]  Josef Paldus,et al.  Reduced multireference CCSD method: An effective approach to quasidegenerate states , 1997 .

[75]  J. Paldus,et al.  Spin-Adapted Multi-Reference Coupled Cluster Formalism Including Non-Linear Terms and its Application to the H4 Model System , 1989 .

[76]  Rodney J. Bartlett,et al.  A multireference coupled‐cluster study of the ground state and lowest excited states of cyclobutadiene , 1994 .

[77]  Josef Paldus,et al.  Simultaneous handling of dynamical and nondynamical correlation via reduced multireference coupled cluster method: Geometry and harmonic force field of ozone , 1999 .

[78]  K. Freed,et al.  Application of complete space multireference many‐body perturbation theory to N2: Dependence on reference space and H0 , 1995 .

[79]  Karol Kowalski,et al.  Excited-state potential energy curves of CH+: a comparison of the EOMCCSDt and full EOMCCSDT results , 2001 .

[80]  Karol Kowalski,et al.  Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches , 2002 .

[81]  R. Bartlett,et al.  A multireference coupled‐cluster method for special classes of incomplete model spaces , 1989 .

[82]  L. Meissner A Fock‐space coupled‐cluster method fully utilizing valence universal strategy , 1995 .

[83]  Josef Paldus,et al.  The general-model-space state-universal coupled-cluster method exemplified by the LiH molecule , 2003 .

[84]  R. Bartlett,et al.  Multireference coupled-cluster methods using an incomplete model space: Application to ionization potentials and excitation energies of formaldehyde , 1987 .

[85]  Karol Kowalski,et al.  The method of moments of coupled-cluster equations and the renormalized CCSD[T], CCSD(T), CCSD(TQ), and CCSDT(Q) approaches , 2000 .

[86]  Ludwik Adamowicz,et al.  A state-selective multireference coupled-cluster theory employing the single-reference formalism , 1993 .

[87]  Ingvar Lindgren,et al.  The Rayleigh-Schrodinger perturbation and the linked-diagram theorem for a multi-configurational model space , 1974 .

[88]  Leszek Meissner,et al.  A coupled‐cluster method for quasidegenerate states , 1988 .

[89]  R. Bartlett,et al.  A Critical Assessment of Multireference-Fock Space CCSD and Perturbative Third-Order Triples Approximations for Photoelectron Spectra and Quasidegenerate Potential Energy Surfaces , 1999 .

[90]  Michael W. Schmidt,et al.  The construction and interpretation of MCSCF wavefunctions. , 1998, Annual review of physical chemistry.

[91]  Ludwik Adamowicz,et al.  The state-selective coupled cluster method for quasi-degenerate electronic states , 1998 .

[92]  İ. Özkan,et al.  Isomerizations of Bicyclo[2.1.0]pent-2-ene and Tricyclo[2.1.0.02,5]pentane into Cyclopenta-1,3-diene: A Computational Study by DFT and High-Level ab Initio Methods , 2004 .

[93]  Ludwik Adamowicz,et al.  The implementation of the multireference coupled‐cluster method based on the single‐reference formalism , 1992 .

[94]  J. Paldus,et al.  Performance of the general-model-space state-universal coupled-cluster method. , 2004, The Journal of chemical physics.

[95]  W. D. Allen,et al.  The Electronic Structure and Vibrational Spectrum of trans-HNOO , 2004 .

[96]  Karol Kowalski,et al.  Can ordinary single-reference coupled-cluster methods describe the potential energy curve of N2? The renormalized CCSDT(Q) study , 2001 .

[97]  Josef Paldus,et al.  Reduced multireference coupled cluster method: Ro-vibrational spectra of N2 , 2000 .

[98]  P. Jungwirth,et al.  Relaxation of chlorine anions solvated in small water clusters upon electron photodetachment. , 1998 .

[99]  S. Kucharski,et al.  Coupled-cluster methods with internal and semi-internal triply excited clusters: Vibrational spectrum of the HF molecule , 1999 .

[100]  U. Kaldor,et al.  Open‐Shell coupled‐cluster method: Variational and nonvariational calculation of ionization potentials , 1986 .

[101]  E. Davidson,et al.  Test of a new multi-reference Møller-Plesset perturbation theory , 1994 .

[102]  Josef Paldus,et al.  A Critical Assessment of Coupled Cluster Method in Quantum Chemistry , 2007 .

[103]  P. Piecuch,et al.  BREAKING BONDS WITH THE STATE-SELECTIVE MULTIREFERENCE COUPLED-CLUSTER METHOD EMPLOYING THE SINGLE-REFERENCE FORMALISM , 1995 .

[104]  R. Bartlett,et al.  Molecular applications of multireference coupled‐cluster methods using an incomplete model space: Direct calculation of excitation energies , 1988 .

[105]  P. Piecuch,et al.  Renormalized coupled-cluster calculations of reactive potential energy surfaces: A comparison of the CCSD(T), renormalized CCSD(T), and full configuration interaction results for the collinear BeFH system , 2002 .

[106]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[107]  W. Kutzelnigg,et al.  Connected‐diagram expansions of effective Hamiltonians in incomplete model spaces. I. Quasicomplete and isolated incomplete model spaces , 1987 .

[108]  P. Piecuch,et al.  In Search of the Relationship between Multiple Solutions Characterizing Coupled-Cluster Theories , 2000 .

[109]  Ludwik Adamowicz,et al.  Multireference coupled cluster method for electronic structure of molecules , 1993 .

[110]  D. Mukherjee,et al.  Application of cluster expansion techniques to open shells: Calculation of difference energies , 1984 .

[111]  J. Paldus,et al.  Analysis of the multireference state-universal coupled-cluster Ansatz , 2003 .

[112]  Development of an efficient linear response approach to the Hilbert space multi-reference coupled-cluster theory , 2001 .

[113]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[114]  I. Lindgren,et al.  On the connectivity criteria in the open-shell coupled-cluster theory for general model spaces , 1987 .

[115]  P. Piecuch,et al.  Method of Moments of Coupled-Cluster Equations: Externally Corrected Approaches Employing Configuration Interaction Wave Functions , 2002 .

[116]  P. Piecuch,et al.  New Alternatives for Electronic Structure Calculations: Renormalized, Extended, and Generalized Coupled-Cluster Theories , 2003 .

[117]  Josef Paldus,et al.  APPLICABILITY OF MULTI-REFERENCE MANY-BODY PERTURBATION THEORY TO THE DETERMINATION OF POTENTIAL ENERGY SURFACES : A MODEL STUDY , 1990 .

[118]  Stolarczyk,et al.  Coupled-cluster method in Fock space. II. Brueckner-Hartree-Fock method. , 1985, Physical review. A, General physics.

[119]  Piecuch,et al.  Application of Hilbert-space coupled-cluster theory to simple (H2)2 model systems: Planar models. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[120]  H. Weidenmüller,et al.  The effective interaction in nuclei and its perturbation expansion: An algebraic approach , 1972 .

[121]  Josef Paldus,et al.  Coupled cluster approaches with an approximate account of triexcitations and the optimized inner projection technique , 1990, Physical review. B, Condensed matter.

[122]  Haruyuki Nakano,et al.  Quasidegenerate perturbation theory with multiconfigurational self‐consistent‐field reference functions , 1993 .

[123]  Mihály Kállay,et al.  A general state-selective multireference coupled-cluster algorithm , 2002 .

[124]  J. Paldus,et al.  DISSOCIATION OF N2 TRIPLE BOND : A REDUCED MULTIREFERENCE CCSD STUDY , 1998 .

[125]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[126]  R. Bartlett,et al.  A general model-space coupled-cluster method using a Hilbert-space approach , 1990 .

[127]  P. Piecuch,et al.  A study of 1A1-3B1 separation in CH2 using orthogonally spin-adapted state-universal and state-specific coupled-cluster methods , 1994 .

[128]  J. Paldus,et al.  Valence universal exponential ansatz and the cluster structure of multireference configuration interaction wave function , 1989 .

[129]  P. Piecuch,et al.  New type of noniterative energy corrections for excited electronic states: Extension of the method of moments of coupled-cluster equations to the equation-of-motion coupled-cluster formalism , 2001 .

[130]  M Hjorth-Jensen,et al.  Coupled cluster calculations of ground and excited states of nuclei. , 2004, Physical review letters.

[131]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[132]  J. Paldus,et al.  Energy versus amplitude corrected coupled-cluster approaches. I , 2001 .

[133]  S. Kucharski,et al.  Can ordinary single-reference coupled-cluster methods describe potential energy surfaces with nearly spectroscopic accuracy? The renormalized coupled-cluster study of the vibrational spectrum of HF , 2001 .

[134]  K. Jankowski,et al.  A valence-universal coupled-duster single- and double-excitations method for atoms. II. Application to Be , 1994 .

[135]  Rodney J. Bartlett,et al.  Hilbert space multireference coupled-cluster methods. I: The single and double excitation model , 1991 .

[136]  John F. Stanton,et al.  Fock space multireference coupled-cluster theory for general single determinant reference functions , 1992 .

[137]  R. Bartlett,et al.  EOMXCC: A New Coupled-Cluster Method for Electronic Excited States , 1999 .

[138]  W. Kutzelnigg,et al.  Connected‐diagram expansions of effective Hamiltonians in incomplete model spaces. II. The general incomplete model space , 1987 .

[139]  Rodney J. Bartlett,et al.  Coupled-cluster methods with internal and semi-internal triply and quadruply excited clusters: CCSDt and CCSDtq approaches , 1999 .

[140]  Rodney J. Bartlett,et al.  The multireference coupled‐cluster method in Hilbert space: An incomplete model space application to the LiH molecule , 1991 .

[141]  K. Jankowski,et al.  A valence-universal coupled-cluster single- and double-excitation method for atoms. I. Theory , 1993 .

[142]  Josef Paldus,et al.  Spin‐adapted multireference coupled‐cluster approach: Linear approximation for two closed‐shell‐type reference configurations , 1988 .

[143]  K. Freed,et al.  Comparison of high order perturbative convergence of multireference perturbation methods: Application to singlet states of CH2 , 1997 .

[144]  Anna I. Krylov,et al.  Singlet-triplet gaps in diradicals by the spin-flip approach: A benchmark study , 2002 .

[145]  U. Kaldor,et al.  Degeneracy breaking in the Hilbert‐space coupled cluster method , 1993 .

[146]  L. Stolarczyk Complete active space coupled-cluster method. Extension of single-reference coupled-cluster method using the CASSCF wavefunction , 1994 .

[147]  J. Paldus,et al.  Reduced multireference couple cluster method. II. Application to potential energy surfaces of HF, F2, and H2O , 1998 .

[148]  Anna I. Krylov,et al.  Perturbative corrections to the equation-of-motion spin–flip self-consistent field model: Application to bond-breaking and equilibrium properties of diradicals , 2002 .

[149]  A. Nowaczyk,et al.  Application of the intermediate Hamiltonian valence-universal coupled-cluster method to atomic systems with one valence electron , 2003 .

[150]  I. Lindgren Linked-Diagram and Coupled-Cluster Expansions for Multi-Configurational, Complete and Incomplete Model Spaces , 1985 .

[151]  U. Kaldor,et al.  Three-electron excitation in open-shell coupled-cluster theory , 1985 .

[152]  J. Olsen,et al.  A general coupled cluster study of the N2 molecule , 2001 .

[153]  P. Taylor,et al.  A full CI treatment of the 1A1-3B1 separation in methylene , 1986 .

[154]  Michael J. McGuire,et al.  Renormalized Coupled-Cluster Calculations of Reactive Potential Energy Surfaces: The BeFH System† , 2004 .

[155]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[156]  Erkki J. Brändas,et al.  Advanced Topics in Theoretical Chemical Physics , 2003 .

[157]  Ernest R. Davidson,et al.  Considerations in constructing a multireference second‐order perturbation theory , 1994 .

[158]  J. Paldus,et al.  Energy versus amplitude corrected coupled-cluster approaches. II. Breaking the triple bond , 2001 .

[159]  P. Piecuch,et al.  Improved computational strategy for the state‐selective coupled‐cluster theory with semi‐internal triexcited clusters: Potential energy surface of the HF molecule , 1995 .

[160]  Kimihiko Hirao,et al.  Multireference Møller-Plesset method , 1992 .

[161]  Josef Paldus,et al.  Orthogonally spin-adapted multi-reference Hilbert space coupled-cluster formalism: diagrammatic formulation , 1992 .

[162]  Josef Paldus,et al.  Approximate account of the connected quadruply excited clusters in the coupled-pair many-electron theory , 1984 .

[163]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[164]  Joseph I. Landman,et al.  Parallelization of multi-reference coupled-cluster method , 2000, Parallel Comput..

[165]  Stolarczyk,et al.  Coupled-cluster method in Fock space. I. General formalism. , 1985, Physical review. A, General physics.

[166]  Josef Paldus,et al.  Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst†‡§ , 1971 .

[167]  Rodney J. Bartlett,et al.  The equation-of-motion coupled-cluster method: Excitation energies of Be and CO , 1989 .

[168]  D. Mukherjee,et al.  Correlation problem in open-shell atoms and molecules. A non-perturbative linked cluster formulation , 1975 .

[169]  Rodney J. Bartlett,et al.  The multi-reference Hilbert space coupled-cluster study of the Li2 molecule. Application in a complete model space , 1991 .

[170]  P. Piecuch,et al.  Extension of Coupled Cluster Methodology to Open Shells: State Universal Approach , 1992 .