GraphAnoGAN: Detecting Anomalous Snapshots from Attributed Graphs

Finding anomalous snapshots from a graph has garnered huge attention recently. Existing studies address the problem using shallow learning mechanisms such as subspace selection, ego-network, or community analysis. These models do not take into account the multifaceted interactions between the structure and attributes in the network. In this paper, we propose GraphAnoGAN, an anomalous snapshot ranking framework, which consists of two core components – generative and discriminative models. Specifically, the generative model learns to approximate the distribution of anomalous samples from the candidate set of graph snapshots, and the discriminative model detects whether the sampled snapshot is from the ground-truth or not. Experiments on 4 real-world networks show that GraphAnoGAN outperforms 6 baselines with a significant margin (28.29% and 22.01% higher precision and recall, respectively compared to the best baseline, averaged across all datasets).

[1]  Bo Zong,et al.  Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection , 2018, ICLR.

[2]  Steve Harenberg,et al.  A Scalable Approach for Outlier Detection in Edge Streams Using Sketch-based Approximations , 2016, SDM.

[3]  Danai Koutra,et al.  DELTACON: A Principled Massive-Graph Similarity Function , 2013, SDM.

[4]  S. V. N. Vishwanathan,et al.  Fast Iterative Kernel Principal Component Analysis , 2007, J. Mach. Learn. Res..

[5]  Qinghua Zheng,et al.  ANOMALOUS: A Joint Modeling Approach for Anomaly Detection on Attributed Networks , 2018, IJCAI.

[6]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[7]  Mykola Pechenizkiy,et al.  ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks , 2020, Machine Learning.

[8]  Tina Eliassi-Rad,et al.  Generating Graph Snapshots from Streaming Edge Data , 2016, WWW.

[9]  Charu C. Aggarwal,et al.  Outlier Analysis , 2013, Springer New York.

[10]  Eric Darve,et al.  Memory-Augmented Generative Adversarial Networks for Anomaly Detection , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[11]  Leman Akoglu,et al.  Scalable Anomaly Ranking of Attributed Neighborhoods , 2016, SDM.

[12]  Hanghang Tong,et al.  MAGE: Matching approximate patterns in richly-attributed graphs , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[13]  Christos Faloutsos,et al.  SedanSpot: Detecting Anomalies in Edge Streams , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[14]  Alessio Conte,et al.  Efficiently Clustering Very Large Attributed Graphs , 2017, 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[15]  Hans-Peter Kriegel,et al.  A survey on unsupervised outlier detection in high‐dimensional numerical data , 2012, Stat. Anal. Data Min..

[16]  Stephan Günnemann,et al.  NetGAN: Generating Graphs via Random Walks , 2018, ICML.

[17]  M. A. Bashar,et al.  TAnoGAN: Time Series Anomaly Detection with Generative Adversarial Networks , 2020, 2020 IEEE Symposium Series on Computational Intelligence (SSCI).

[18]  Christos Faloutsos,et al.  Catching Synchronized Behaviors in Large Networks , 2016, ACM Trans. Knowl. Discov. Data.

[19]  Yu Cheng,et al.  Deep Structured Energy Based Models for Anomaly Detection , 2016, ICML.

[20]  Minyi Guo,et al.  GraphGAN: Graph Representation Learning with Generative Adversarial Nets , 2017, AAAI.

[21]  Marc Plantevit,et al.  SIAS-miner: mining subjectively interesting attributed subgraphs , 2019, Data Mining and Knowledge Discovery.

[22]  Philip S. Yu,et al.  GraphScope: parameter-free mining of large time-evolving graphs , 2007, KDD '07.

[23]  I. Jolliffe Principal Components in Regression Analysis , 1986 .

[24]  Rok Sosic,et al.  F-FADE: Frequency Factorization for Anomaly Detection in Edge Streams , 2020, WSDM.

[25]  Peng Zhang,et al.  IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models , 2017, SIGIR.

[26]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[27]  Martin Atzmüller,et al.  MinerLSD: efficient mining of local patterns on attributed networks , 2019, Appl. Netw. Sci..

[28]  David F. Gleich,et al.  Vertex neighborhoods, low conductance cuts, and good seeds for local community methods , 2012, KDD.

[29]  FaloutsosChristos,et al.  Catching Synchronized Behaviors in Large Networks , 2016 .

[30]  Toby P. Breckon,et al.  GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training , 2018, ACCV.

[31]  Sudipto Guha,et al.  SpotLight: Detecting Anomalies in Streaming Graphs , 2018, KDD.

[32]  Hwee Kuan Lee,et al.  Fence GAN: Towards Better Anomaly Detection , 2019, 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI).

[33]  Huan Liu,et al.  Interactive Anomaly Detection on Attributed Networks , 2019, WSDM.

[34]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[35]  Yoshua Bengio,et al.  Maximum Entropy Generators for Energy-Based Models , 2019, ArXiv.

[36]  Mykola Pechenizkiy,et al.  ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks , 2021, Machine Learning.

[37]  Danai Koutra,et al.  Graph based anomaly detection and description: a survey , 2014, Data Mining and Knowledge Discovery.

[38]  Tanmoy Chakraborty,et al.  Blackmarket-driven Collusion on Online Media: A Survey , 2020, ArXiv.

[39]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[40]  Bryan Hooi,et al.  ExGAN: Adversarial Generation of Extreme Samples , 2020, ArXiv.

[41]  Christos Faloutsos,et al.  MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams , 2019, AAAI.

[42]  Christos Faloutsos,et al.  oddball: Spotting Anomalies in Weighted Graphs , 2010, PAKDD.

[43]  Danai Koutra,et al.  Mining Persistent Activity in Continually Evolving Networks , 2020, KDD.

[44]  Emanuele Ghelfi,et al.  A Survey on GANs for Anomaly Detection , 2019, ArXiv.

[45]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[46]  Xu Han,et al.  GAN Ensemble for Anomaly Detection , 2020, AAAI.

[47]  Tobias Hecking,et al.  Positional analysis in cross-media information diffusion networks , 2019, Applied Network Science.

[48]  Luca Benini,et al.  Anomaly Detection using Autoencoders in High Performance Computing Systems , 2018, DDC@AI*IA.

[49]  Kumar Sricharan,et al.  Localizing anomalous changes in time-evolving graphs , 2014, SIGMOD Conference.

[50]  Huan Liu,et al.  Deep Anomaly Detection on Attributed Networks , 2019, SDM.

[51]  Leman Akoglu,et al.  Discovering Communities and Anomalies in Attributed Graphs , 2018, ACM Trans. Knowl. Discov. Data.