High-Dimensional Gaussian Process Bandits

Many applications in machine learning require optimizing unknown functions defined over a high-dimensional space from noisy samples that are expensive to obtain. We address this notoriously hard challenge, under the assumptions that the function varies only along some low-dimensional subspace and is smooth (i.e., it has a low norm in a Reproducible Kernel Hilbert Space). In particular, we present the SI-BO algorithm, which leverages recent low-rank matrix recovery techniques to learn the underlying subspace of the unknown function and applies Gaussian Process Upper Confidence sampling for optimization of the function. We carefully calibrate the exploration-exploitation tradeoff by allocating the sampling budget to subspace estimation and function optimization, and obtain the first subexponential cumulative regret bounds and convergence rates for Bayesian optimization in high-dimensions under noisy observations. Numerical results demonstrate the effectiveness of our approach in difficult scenarios.

[1]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .

[2]  Jonas Mockus,et al.  On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.

[3]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[4]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[5]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[6]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[7]  Peter Auer,et al.  Using Confidence Bounds for Exploitation-Exploration Trade-offs , 2003, J. Mach. Learn. Res..

[8]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[9]  H. Robbins Some aspects of the sequential design of experiments , 1952 .

[10]  Tao Wang,et al.  Automatic Gait Optimization with Gaussian Process Regression , 2007, IJCAI.

[11]  Eli Upfal,et al.  Multi-Armed Bandits in Metric Spaces ∗ , 2008 .

[12]  Csaba Szepesvári,et al.  Online Optimization in X-Armed Bandits , 2008, NIPS.

[13]  Ding-Xuan Zhou,et al.  Learning gradients on manifolds , 2010, 1002.4283.

[14]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[15]  Martin J. Wainwright,et al.  Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.

[16]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[17]  Adam D. Bull,et al.  Convergence Rates of Efficient Global Optimization Algorithms , 2011, J. Mach. Learn. Res..

[18]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[19]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[20]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[21]  Rémi Munos,et al.  Bandit Theory meets Compressed Sensing for high dimensional Stochastic Linear Bandit , 2012, AISTATS.

[22]  S. Kakade,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2012, IEEE Transactions on Information Theory.

[23]  Csaba Szepesvári,et al.  Online-to-Confidence-Set Conversions and Application to Sparse Stochastic Bandits , 2012, AISTATS.

[24]  Andreas Krause,et al.  Joint Optimization and Variable Selection of High-dimensional Gaussian Processes , 2012, ICML.

[25]  Jan Vybíral,et al.  Learning Functions of Few Arbitrary Linear Parameters in High Dimensions , 2010, Found. Comput. Math..

[26]  Volkan Cevher,et al.  Active Learning of Multi-Index Function Models , 2012, NIPS.

[27]  V. Cevher,et al.  Learning Non-Parametric Basis Independent Models from Point Queries via Low-Rank Methods , 2013, 1310.1826.

[28]  Nando de Freitas,et al.  Bayesian Optimization in High Dimensions via Random Embeddings , 2013, IJCAI.

[29]  Hemant Tyagi,et al.  Continuum Armed Bandit Problem of Few Variables in High Dimensions , 2013, WAOA.