High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance.

[1]  V. Ozoliņš,et al.  First Principles Study for Lithium Intercalation and Diffusion Behavior in Orthorhombic Nb2O5 Electrochemical Supercapacitor , 2012 .

[2]  Vidvuds Ozolins,et al.  Ab Initio Study of the Charge-Storage Mechanisms in RuO2-Based Electrochemical Ultracapacitors , 2012 .

[3]  B. Dunn,et al.  The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5 , 2012 .

[4]  P. Taberna,et al.  Electrochemical Kinetic Study of LiFePO4 Using Cavity Microelectrode , 2011 .

[5]  Zhimin Liu,et al.  Facile preparation of nanocrystalline Li4Ti5O12 and its high electrochemical performance as anode material for lithium-ion batteries , 2011 .

[6]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[7]  John Wang,et al.  Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. , 2010, Journal of the American Chemical Society.

[8]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[9]  Hui Xia,et al.  Substrate effect on the microstructure and electrochemical properties of LiCoO2 thin films grown by PLD , 2006 .

[10]  S. Komaba,et al.  Electrochemical and In Situ XAFS-XRD Investigation of Nb2O5 for Rechargeable Lithium Batteries , 2006 .

[11]  Karen E. Swider-Lyons,et al.  Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering , 2002 .

[12]  H. Abruña,et al.  Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. , 2001, Chemical reviews.

[13]  Robert A. Huggins,et al.  Supercapacitors and electrochemical pulse sources , 2000 .

[14]  Y. Koishikawa,et al.  Thermodynamics and Kinetics of Lithium Intercalation into Nb2 O 5 Electrodes for a 2 V Rechargeable Lithium Battery , 1999 .

[15]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[16]  Jeffrey W. Long,et al.  Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials , 1999 .

[17]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[18]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[19]  N. Krstajić,et al.  Reply to “note on a method to interrelate inner and outer electrode areas” by H. Vogt , 1994 .

[20]  B. Conway,et al.  Transition from 'supercapacitor' to 'battery' behavior in electrochemical energy storage , 1990, Proceedings of the 34th International Power Sources Symposium.

[21]  S. Ardizzone,et al.  "Inner" and "outer" active surface of RuO2 electrodes , 1990 .

[22]  K. Sawai,et al.  Electrochemistry of L-niobium pentoxide a lithium/non-aqueous cell , 1987 .

[23]  B. Conway,et al.  Computer simulation of the kinetic behaviour of surface reactions driven by a linear potential sweep: Part II. Sequential reactions of adsorbed species , 1977 .

[24]  K. Kato,et al.  Die Kristallstruktur von T-Nb2O5 , 1975 .